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Abstract—The aim of this paper is to study how the use of an
advanced trading method, like the optimal quantile strategy,
may effect the balance between generation and consumption
at the power system level when trading solar PV power on
the Nordic Power Exchange. In order to do this we first
developed a set of PV power forecast models. Numerical
weather prediction data together with power measurements
at 210 PV installations, in the regional network operated by
Tekniska Verken Linköping Nät AB, were used for estimation
and evaluation. Linear and non-linear regression, the latter
in terms of an artificial neural network, both resulted in an
RMSE, normalized with installed power, of about 6 %. Second
we used the neural network to perform a three month simu-
lation experiment on the Nord Pool Elspot day-ahead market.
Strategies based on deterministic forecasts were compared with
the use of the optimal quantile, based on ensemble forecasts
of the power probability distribution. The optimal quantile
strategy resulted in an increased revenue of around 2 %
but also in an increased imbalance between contracted and
produced energy of almost 20 %. The imbalanced part of
the power production for the optimal quantile strategy was
about one third. A similar study, on trading wind power with
the same strategy from a hypothetical plant on the Nord pool
market, showed that about half of the traded energy became
imbalanced.

I. INTRODUCTION

The solar energy resource is fluctuating, non-trivial to

predict and only dispatchable at high costs. Hence, producers

of solar power participating in liberalized electricity markets

are subject to regulation costs. On such markets, energy bids

are proposed in advance, and the bidders are then charged

for any imbalance between the actual production and the

bids. With more variable solar power being urged to enter

the market, imbalances from individual traders may add

up and result in increased imbalances between production

and demand at the power system level. This could cause

challenges to the integration of solar energy into the power

system.

It is clear that solar power forecasts are essential when

trying to maximize ones benefits on such a market. Previ-

ous studies on wind energy trading show that the use of

the so-called optimal quantile strategy (OQS) outperforms

strategies based on deterministic point forecasts [1]. OQS

uses probabilistic energy forecasts together with forecasts of

the prices for up and down regulation in order to minimize

the expected imbalance costs for the trader. However this

can, somewhat counter-intuitive, result in an increase in the

actual imbalance between bids and production. If many wind

energy producers would employ this same strategy it might

no longer be optimal. The reason is that it is based on the

price-taker assumption where the producer is without market

Fig. 1. NWP grid points (red) and PV installations (yellow) in the network
managed by Tekniska Verken AB. Map created with the Python package
gmplot using Google Maps (2018) as background.

power. Moreover, if the strategy became commonplace, it

may even act destabilizing on the power system [2].

In this paper we investigate how pronounced this effect

may be when trading solar power using the OQS. For this

purpose we take on the role of a fictitious market participant

trading the available solar power from the Swedish regional

network operated by Tekniska Verken Linköping Nät AB on

the Elspot day-ahead market. In this network there are close

to 300 solar power installations with a total nominal effect

of about 6 MW.

In section II we present the data used for this study and

in section III we develop a linear regression model and an

artificial neural network (ANN) for prediction of the total

net solar power production in the regional network. The

model input consists of measured net load and solar power

production from the previous day along with probabilistic
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Daily cycle of average power production and price

Fig. 2. Daily cycles of average net PV power production in the study area
along with average prices for the Elspot area SE3 during April - June 2017.

km scale numerical weather prediction (NWP) ensemble

data. Here we also revisit the formulation of the optimization

problem facing the market participant and how it can be

solved with the OQS.

A market simulation experiment using the ANN forecasts

together with the OQS is presented in section IV-B. Here

deterministic trading strategies are evaluated in competition

with the probabilistic OQS. Forecasting the regulation costs

necessary for the OQS is beyond the scope of this paper.

Instead we use either persistence or a perfect forecast for

this purpose. The perfect forecast is given by regulation

costs data from the Nord Pool archive. This provides us with

reasonable lower and upper bounds on the performance of

the strategy with respect to the market information.

In section IV we summarize the results from the model

and strategy evaluations. The paper ends with section V on

discussions and conclusions.

II. DATA

This section describes the three data sets that were used for

this study; measured net power production and consumption,

NWP ensemble forecasts and Elspot prices for the corre-

sponding dates. All data have hourly time resolution and

refer to the time periods March - October 2016 and April

- June 2017. The data was divided into one training set,

consisting of the data from 2016, and one set with the data

from 2017 used for model evaluation and market simulation

experiments.

A. Power measurements

The electricity measurements were provided by Tekniska

verken that is responsible for the electrical grid in the

Municipality of Linköping, parts of the Municipality of

Mjölby and large parts of the Municipality of Katrineholm in

Sweden. Hourly measurements of net PV power production

and net consumption are available from 220 sites with PV

installations in the Linköping net, and 51 sites in the Katrine-

holm network. For each installation information about the

geographical location and the installed effect is also known.

Measurements of the gross PV production are not mandatory

in Sweden. Such information is only available for a very

limited number of sites and was not used in this study.

Some of the sites were excluded due to limited data avail-

ability. In the end, data from 210 power plants with a total

installed effect of 3.75 MW was used. These installations

are located on 125 households (1030 kW), 54 apartment

complexes (1495 kW), 10 office buildings (515 kW) and 21

farms (710 kW) and are scattered over an area of about 100

x 150 km2. They all reside inside the Elspot area SE3, see

figure 1. The daily cycle of the net power production from

the 210 installations is shown with a blue line in figure 2. The

average net production peaks at about 35 % of the installed

effect.

B. MetCoOp Ensemble Prediction System (MEPS)

MetCoOp is a cooperation around operational NWP pro-

duction between Sweden, Norway and Finland. MEPS is de-

veloped in the framework of the shared Aire Limite Adapta-

tion Dynamique Developpement InterNational (ALADIN) -

High-Resolution Limited-Area Model (HIRLAM) NWP sys-

tem. This system can be run with different configurations and

here version 40h1.1 of the so-called ALADIN-HIRLAM Re-

gional Meso-scale Operational NWP In Europe-Application

of Research to Operations at Mesoscale (HARMONIE-

AROME) is used [3], [4]. The main components of the

ALADIN-HIRLAM NWP system are surface data assimila-

tion, upper-air data assimilation and the forecast model for

the forward time integration. MEPS provides both global

(GHI) and direct normal irradiance (DNI) solar radiation

fluxes at the surface. The radiation model is based on the

Morcrette radiation scheme from cycle 25R1 [5] and uses

the Rapid Radiative Transfer Model of Mlawer et. al [6].

The MEPS model domain is made up of 900 x 960 points

with 2.5 km grid spacing and 65 levels covering the Nordic

region. The grid is defined by a Lambert projection with the

center at 63.5◦N and 15◦E. An example showing the layout

of the gridpoints within the region of interest for this study

is given in figure 1. The ensemble consists of one control

(deterministic best estimate) plus nine perturbed ensemble

members. The SLAF method [7] is used to produce initial

and boundary perturbations from ECMWF deterministic

forecasts using a lagging technique.

Unfortunately only the control member is archived oper-

ationally at SMHI. However, all MEPS member forecasts

started at 00 UTC with a length of 24 hours and hourly

time steps were temporarily archived during April - June

2017. These have been used for the present study along

with archived control member forecasts from April - October

2016. The parameters of interest here are the accumulated

hourly values of GHI and DNI together with instantaneous

values of two metre temperature and 10 metre wind speed.

C. Spot prices and regulation costs

As noted earlier, all of the PV power plants in the network

under investigation are located within the price area SE3 of

Nord Pool’s Elspot market. For the trading simulations we

downloaded historical data for the Elspot day-ahead mar-

ket from https://www.nordpoolgroup.com. More

specifically we obtained hourly data regarding the Elspot

price and the up and down regulating prices (e/MWh) for

the SE3 area during the years 2016 and 2017. The price data

refers to hourly intervals.



The daily cycle of the Elspot price during April - June

2017 is illustrated with the red line in figure 2. It shows

that the timing imbalance between peak demand and PV

power production is also present in the SE3 area of the Elspot

market given the present PV installations. The morning and

afternoon peaks in the demand should also be applicable to

our study where about two thirds of the installed power is

attributed to PV-installations on households and residental

buildings.

III. METHODS

In order to asses if and how different trading methods

affects the imbalance we set up a test case during April -

June 2017. To perform a market simulation we need to be

able to forecast the total net solar PV power production from

the portfolio of installations and apply a trading strategy to

place bids on the market. In this section we describe three

different forecast methods (persistence, linear regression and

an ANN) for the power production. We also briefly describe

the trading problem and the optimal quantile strategy that

was used to derive optimal bids based on information from

the ensemble forecasts.

A. Predicting net PV power production

As a hypothetical actor on the Nord Pool Elspot market,

specialized on trading solar power, we need to be able to

forecasts the production for the day-ahead market. Here we

use an approach similar to that in our previous study where

gross and net PV production were predicted at individual

sites [8]. NWP information from the MEPS, along with

measurements of net production and net consumption from

the previous day were used as input data for the forecast.

To make things simple we did not distinguish between

weekdays and holidays. Furthermore we assumed that we

have access to the NWP forecast issued at 00 UTC and all

measurements up to the hour when the bid is placed. In

reality the bids should be placed at 12 UTC the previous day

and a more realistic experimental set-up will be the subject

for a future study.

1) Persistence: The persistence model does not involve

any parameter estimation and the input is simply the same

as the output - the observed total net PV power production

value for the corresponding hour from the previous day.

2) Linear regression: The input vector (x) to the linear

regression consist of the NWP forecast data (GHI, DNI,

two metre temperature and 10 metre wind speed for the

next 24 hours as well as for the past 24 hours) together

with measured net production and consumption from the

previous day. The idea behind this is that model should

be able to make a connection between yesterdays state

of the atmosphere (containing information about the gross

production) and the net production and consumption during

the previous day. We also included the cosine of the solar

zenith angle to provide some information about the time of

the day and the season. It should also help to account for

the effect of PV on tilted surfaces. A constant was added to

the input vector in order for the model to be able to add a

bias.

Hourly NWP data for the GHI and DNI were obtained

by taking differences between accumulated forecasts from

Fig. 3. Daily mean RMSEn cycle for the PV power predictions (persis-
tence: red, linear model: blue, ANN: green). The shaded areas illustrate the
95 % confidence intervals.

00 + LL + 1 and 00 + LL where LL is a forecast length

between one and 24 hours. Hence forecasts for the time

intervals 00 − 01 UTC, . . ., 23 − 24 UTC were obtained.

The two metre temperature and 10 metre wind speed are

available as instantaneous values. Here we used the values

assigned to the start of the interval. The measured power

production and consumption refer to the same intervals as

the GHI and DNI forecasts.

Instead of modelling the power production at each individ-

ual site and then accumulate, we used a single input vector

obtained as a weighted sum of the input vectors for each

site. The weights are given by the relative installed power at

each site:

x =
∑

k

pn
k
xk/

∑

k

pn
k
. (1)

Here pn
k

and xk refer to the installed power and the input

vector for a given site. A linear least squares method was

used to estimate the model parameters (Python function

numpy.linalg.lstsq):

w⋆ = argmin
w

∑

d

∑

t

(wTx− po(d, t))
2, (2)

where po(d, t) denotes the observed sum of the net power

production at all sites at time t of the day d. Data for the

estimation was taken from the time period April - October

2016 when only the MEPS control member was available.

3) Artificial neural network: The use of machine learning

has a long history within the area of energy forecasting [9].

In this study we used an off the shelf ANN from TensorFlow

[10] to see if it could perform better than the linear model.

We employed the standard feedforward ANN

(DNNRegressor) from TensorFlow with a three layer

feedforward topology using one input, one hidden, and one

output layer. In our set-up it had 11 inputs, 32, 64 or 96

nodes in the hidden layer and 1 node in the output layer.

Determining the number of hidden neurons in the hidden

layer(s) is a trade off between the networks ability to gener-

alize from the training data and its representative power. As a

guide we used an empirical relation for the number of hidden

layer neurons: nhl = 0.5(nin + nout) +
√
ntrain [9]. Here



nin, nout and ntrain denotes the number of input, output and

the size of the training data set respectively. In our case the

number of inputs equals 11 and we have one single output

(the total net production). The number of cases in the training

data set was 5136. Hence the suggested number of nodes in

the hidden layer becomes 78. To check the robustness of

this choice we decided to try with 32, 64 and 96 neurons in

the hidden layer. The network with 32 neurons performed

slightly better than the others on the evaluation data set so

the results presented here are based on the outputs from that

network.

The ANN model use the same input as described for

the linear regression approach. In order to harmonize the

amplitudes of the input variables we removed the mean

(m) and normalized the input vector by multiplying it with

the inverse of the square root sample covariance matrix

(C), calculated from the training data set. The TensorFlow

minimization algorithm then finds the solution to

w⋆ = argmin
w

∑

d

∑

t

(wT

o
f(wh, C

−
1

2 (x−m))− po
n
(d, t))2

(3)

using an iterative procedure. Here we used data from the

time period April - October 2017 for estimation and from

April - June 2017 for evaluation. In both cases NWP data

from the MEPS control member was used.

B. Electricity trading

We now turn to the problem of trading PV power using the

model presented in the previous section. First we formulate

the trading problem in terms of a cost function and then

describe strategies for how to make bids that minimize it. For

this presentation we use a notation and problem formulation

that is close to that in Pinson et. al [1].

1) Cost function: On the Elspot day-ahead market, power

producers have to announce the amount of energy they are

willing to deliver over the following trading period for every

unit of time. Here we restrict ourselves to a trading period of

24 hours and hourly time units, each referred to as a program

time unit (PTU).

For any PTU (at time t) during the following day, market

participants have to propose an amount of contracted energy

Ec(t). Now the revenue from proposing an amount of Ec(t)
but in fact producing the amount Eo(t) is given by

R(t) = πc(t)Ec(t) + Tc(t). (4)

Here πc and Tc denote the spot price and imbalance cost

respectively. The imbalance do is given by the difference

between the actual and contracted energy amounts:

do(t) = Eo(t)− Ec(t). (5)

The regulating power market is managed by the Tranmis-

sion System Operator (TSO). In case consumption exceeds

generation, the TSO ensures that the producers deliver more

electricity to the grid. When generation exceeds consumption

its the other way round and the TSO must see to that pro-

ducers reduce the generation. These procedures to regulate

imbalances at the system level are called up- and down-

regulation. During an hour with up-regulation on the Elspot

market, producers producing too much will only get paid

the market price. On the other hand, producers producing

too little during up-regulation will instead be charged the up-

regulating price (higher or equal to the market price). During

hours with down-regulation, producers producing too much

will get paid the down-regulating price (lower or equal to

the market price). Producers producing too little will in this

case be charged the full market price.

The imbalance cost can hence be written as

Tc(t) =

{

π+(t)do(t) , do(t) ≥ 0
π−(t)do(t) , do(t) < 0

(6)

where π+ and π− are the prices associated with positive

(down-regulation) and negative (up-regulation) imbalances

respectively.

Let us introduce regulation unit costs in terms of differ-

ences between imbalance costs and the spot price πc as

πu+(t) = πc(t)− π+(t) (7)

πu−(t) = π−(t)− πc(t). (8)

The revenue can then be re-formulated as a sum of the

energy actual produced minus the regulation costs

R(t) = πo(t)Eo(t)− To(t), (9)

where the cost is now expressed in terms of the unit

regulation prices:

To(t) =

{

πu+(t)do(t), do(t) ≥ 0
−πu−(t)do(t), do(t) < 0

(10)

Using this formulation the first terms now corresponds to

the revenue from using a perfect forecast, independent of the

bidding strategy. Hence, maximizing the revenue then means

minimizing the cost To.

The revenue can also be expressed in terms of a perfor-

mance ratio. This measure will be used when evaluating dif-

ferent bidding strategies in the next section. The performance

ratio is calculated for a given number of days and PTUs by

normalizing the actual revenue by the revenue had one used

perfect forecasts:

γ = 1−
∑

d

∑

t
To(d, t)

∑

d

∑

t
πc(d, t)Eo(d, t)

(11)

Note that the performance ratio will have the property that

γ ∈ (−∞, 1] where 1 will correspond to the performance of

bidding with a perfect forecast.

2) Trading strategies: Determinisitic or point prediction

methods forecast the expected power production. Their out-

put can be seen as a measure of the average power output,

e.g. during a PTU of one hour as is the case here. Hence we

can use the power forecasts as forecast of the energy for a

PTU with a one hour duration.

With access to ensemble forecasts we can also take a

probabilistic approach. The imbalance in equation 5 will then

be treated as a realization of a random variable. Instead of a

point forecast, Ec, we will use an estimate of the probability

for a given energy production at a given time, P (E, t).
With a probabilistic approach, minimization of the imbal-

ance cost To in equation 10 is replaced with the minimization

of its expectation value

Ec(t) = argmin
E

∫

∞

0

To(t)P (x, t)dx (12)



where we use do(t) = x−E(t) in the calculation of To(t).

This minimization problem is known as a standard linear

terminal loss problem. The reader is referred to statistical

textbooks for the derivation of its solution, e.g. [11]. The

bid that minimize the expected loss is given by

Ec(t) = F−1

E

(

πu+(t)

πu+(t) + πu−(t)

)

. (13)

Here F−1

E
is the inverse cumulative distribution, or quan-

tile function, of the random variable E. This is the reason

why this bidding strategy is known as the optimal quantile

strategy. In our case we had 10 ensemble members providing

information about the distribution P (E) and we used the

Python function percentile to obtain the optimal quan-

tile in equation 13. Note that this means that the optimal bid

is in general not given by a deterministic forecast since such

a forecast only provides an estimate of the expectation value

of the produced energy.

Moreover, to obtain the optimal bid one must not only

have a forecast for the quantile function but also of its

argument, the percentage point, given by the ratio

r(t) =
πu+(t)

πu+(t) + πu−(t)
. (14)

When both the down and up regulation prices equal the

spot price we end up with a zero in the denominator. In these

cases we set r(t) = 0.5 in order not to favour a certain

direction of the imbalance. Note that the percentage point

will almost only takes on the values 0, 0.5 and 1 since most

of the time, either the up or the down regulation price equals

the spot price.

To illustrate the workings of this strategy, consider the

case when the unit cost for producing too much (positive

imbalance) is much higher than the cost for producing to

little (negative imbalance). In such a situation where πu+ ≫
πu−, the percentage unit will be close to 1. The OQS then

suggests us to contract as much energy as possible in order to

end up producing less than the contracted amount and obtain

a negative imbalance. When the cost for producing too little

outweighs the cost for producing too much, the percentage

unit will be close to zero and the situation is reversed.

Forecasting the percentage point is beyond the scope

of this paper. Instead we used either a perfect forecast

or the average percentage point during the previous day

when comparing OQS to strategies based on deterministic

forecasts. We did look at the daily and yearly cycles of the

percentage point ratio during the year 2017 but found no

significant patterns.

TABLE I
UPPER AND LOWER 95 % CONFIDENCE LEVELS FOR THE MEAN

SQUARED CORRELATION VALUES AND NORMALIZED (WITH INSTALLED

POWER) RMSE AND BIAS FOR MODELED PV POWER PRODUCTION

USING PERSISTENCE, LINEAR REGRESSION AND ANN.

Persistence Linear ANN

Squared correlation 0.56, 0.61 0.86, 0.88 0.87, 0.89

RMSEn [%] 11, 12 5.8, 6.1 5.5, 5.8

BIASn [%] -0.51, 0.44 0.11, 0.61 0.15, 0.62

TABLE II
SUMMARY OF DETERMINISTIC AND OQS STRATEGIES USED FOR

COMPARISONS IN THE MARKET SIMULATION EXPERIMENT.

Deterministic strategies Optimal quantile strategies

Persistence for p Ensemble for p, persistence for r

Control member for p Ensemble for p, perfect forecast of r

Ensemble mean for p

Perfect forecast of p

IV. RESULTS

In this section we first present results from a comparison

of the different models for predicting net PV power produc-

tion, followed by findings from a test case where bidding

strategies based on OQS and deterministic forecasts were

compared.

A. Predicting net PV power production

In order to evaluate the performance of the different

models for prediction of the net PV power production we

looked at the bias and root mean squared error (RMSE)

normalized by the installed power (RMSEn) and calculated

the square of the Pearson’s correlation coefficient between

the modelled and observed net PV power production.

The daily cycles of the mean RMSEn when using the

linear regression and the ANN models are illustrated in

figure 3 along with the 95 % confidence intervals. The

error corresponding to a persistence model is included for

comparison. The error is shown as a function of forecast

length. All forecasts are initialized at 00 UTC. Both the

linear and the ANN models perform significantly better than

persistence throughout most of the day. However, the linear

model is somewhat worse during the morning hours. Aside

from that the linear and ANN models show similar scores as

summarized in table I. The results are in line with those from

our previous study on net PV power prediction at individual

sites [8]. Even though the ANN did not significantly outper-

form the linear model we decided to use it in the trading

test case described in the next section.

B. Trading test case

Solar power is neither dispatchable nor easy to predict.

Hence, trading solar energy will result in imbalances when

either too much or too little energy is contracted during day-

ahead trading. In order to evaluate the OQS strategy and

investigate its effect on the resulting imbalances we set up a

market simulation experiment. The simulation was run with

hourly time resolution for the period April - June 2017 since

this was the time period for which we had available ensemble

NWP data. Corresponding market data for the Elspot SE3

area was obtained as described earlier.

The assumptions were the same as in the previous study

for wind energy [1]. We review them in brief here. First,

potential effects related to solar energy penetration in the

market are neglected, i.e. the amount of solar energy that

enters the power system is so small that it does not affect

the spot price. Second, the solar power trader is considered

as a price-taker and again too small to affect neither the spot

nor the the imbalance price. Third, the trader does not do

any corrective actions during the intra-day market.



In this experiment, the solar power producer participates

in the market with the aim of maximizing the expected

revenue during the three months. This then translates into

minimizing penalties from up and downward regulation and

that the optimal strategy is given by the solution to equation

13. However, the solution of this equation calls for a forecast

of the percentage point r. In this experiment we compared

two such forecasts. To get optimistic and pessimistic bounds

on the performance of the OQS strategy we assumed either

to have a perfect forecast, ro, or a persistence like forecast

given by its mean value during the previous day, r−1d. These

two OQS strategies were then compared with four strategies

based on deterministic forecasts resulting in a comparison

of six different alternatives as outlined in table II. The

performance of these strategies during the market simulation

experiment is summarized in table III.

Trading using the deterministic power forecast based on

persistence results in more or less no difference between the

positive and negative imbalances. Using the control member

or the ensemble mean (both based on the ANN) also results

in about equal amounts of surplus and shortage as shown in

table III. This is in line with the model performance results

related to bias presented in table I.

The strategy based on persistence contracts a similar

amount of energy as that based on a perfect forecast. How-

ever, almost half of the production becomes imbalanced with

similar amounts in surplus and shortage. Using persistence

one trades at the highest average energy price but still ends

up with the worst results, whichever performance measure

we look at. Using a good forecast pays off in terms of greater

revenue for the trader since it decreases the financial risks

related to regulation costs. Note however, that the strategy

resulting in the largest revenue (OQS with perfect forecast

for r) actually both contracts the largest amount of energy

and at the same time results in a larger imbalance (32 %)

than any of the other non-persistence strategies.

Figure 4 illustrates the increase in accumulated revenue

between the strategy based on a perfect forecast, the two

OQS versions and the ensemble mean compared to that from

a strategy based on persistence only. Note that there are

flat periods where persistence works well and abrupt steps

where such an assumption breaks down. There is a large

gap between the end result from the two OQS strategies

indicating that the quality of the forecast of the percentage

point r is essential.

The average spot price during April - June 2017 was 28.51

e/MWh. However, due to the timing imbalance between

peak demand and PV power production, illustrated in figure

2, the highest average price per produced MWh a solar

producer will obtain is something different. With a perfect

forecast of the solar power, the average price equals 28.75

e/MWh while the best strategy trades at, 29.95 e/MWh and

persistence at the highest average, 30.29 e/MWh.

Reducing imbalances does not necessarily result in in-

creased revenues. It is actually the other way round, unless

one have a perfect forecast. Both of the optimal quantile

strategies perform better than the deterministic strategies

based on the control member or the ensemble mean. OQS

with a perfect forecast for r produce more imbalanced

energy (32 %) than its deterministic counterparts while OQS
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(blue) and using the ensemble mean forecast (cyan) compared to the revenue
obtained using a persistence strategy.

with persistence for r results in almost the same amounts

of imbalanced production. The reason for this is that the

OQS trades in such a way that an imbalance risk for any

given time is matched with its corresponding regulation

cost. Hence, the average unit regulation cost for the optimal

quantile strategies are the lowest.

During the three month market simulation, the average

unit costs for down-regulation (positive imbalances) were

higher than for up-regulation (negative imbalances). This

was true for all the non-perfect trading strategies. As a

consequence a trader would prefer to make bids that are more

likely to result in a shortage than in a surplus as confirmed by

the figures in table III. This situation is desirable for the TSO

since the relation between the up and down-regulation prices

reflects how sensitive the TSO is to negative and positive

system imbalances respectively.

Figure 5a shows an example with spot and regulating

prices for May 11:th 2017 along with the corresponding

percentage point (black line). Note that the percentage point

only takes on the values 0, 0.5 and 1 as pointed out earlier.

The result using the OQS and the observed percentage point

(perfect forecast) for this date is illustrated in figure 5b. Note

how the forecast switches between the minimum (r= 0), the

median (r= 0.5) and the maximum (r= 1.0) percentiles of

the forecasted solar power distribution.

V. DISCUSSION AND CONCLUSION

In this paper we developed and evaluated a linear and an

ANN model for day-ahead prediction of the total net solar

power production from 210 PV installations in an area of

about 100 x 150 km2 in the Southern part of Sweden. The

linear model performed almost as well as an off the shelf

ANN from TensorFlow. In terms of RMSE, normalized with

the installed power, the linear model and the ANN ended up

with values of 5.9 and 5.6 % respectively. Some degradation

in the linear model could be seen during the first six hours

of the forecast. Previous studies have shown that the choice

between different non-linear models is not critical [12].



TABLE III
SUMMARY OF THE RESULTS FOR DIFFERENT STRATEGIES BEING EMPLOYED DURING THE MARKET SIMULATION EXPERIMENT.

Persistence Control mbr Ensemble mean OQS, r
−1d OQS, ro Perfect forecast

Contracted energy (MWh) 968.4 933.6 932.6 975.8 985.8 965.4

Surplus (MWh) 233.2 148.6 148.0 124.6 144.6 0.0

Shortage (MWh) 236.2 116.8 115.1 135.0 165.0 0.0

Total revenue (103 e) 27.76 28.40 28.39 28.51 28.91 29.24

Down-regulation costs (e) 922.0 555.3 544.5 433.8 229.8 0.0

Up-regulation costs (e) 560.7 282.9 302.5 297.5 97.1 0.0

Avg. down-regulation unit cost (e/MWh) 3.57 3.30 3.23 3.02 1.82 0.0

Avg. up-regulation unit cost (e/MWh) 1.68 2.07 2.08 1.88 0.99 0.0

Avg. regulation unit cost (e/MWh) 2.66 2.74 2.71 2.45 1.39 0.0

Avg. energy price (e/MWh) 30.29 29.42 29.41 29.53 29.95 28.75

Performance ratio (%) 94.93 97.13 97.10 97.26 98.88 100.0

Imbalanced part of production (%) 48.62 27.50 27.25 26.89 32.06 0.0
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Fig. 5. Example from May 11:th 2017. In (a) the hourly Elspot price in the SE3 area (solid green) along with down (solid blue) and up (solid red)
regulation prices and regulation unit costs for positive (dashed red) and negative (dashed blue) imbalances. The ratio between the unit regulation cost for
positive imbalance and the sum of the unit regulation costs for positive and negative imbalances is shown with a solid black line. In (b) the measured
power production (yellow) and bid based on the optimal quantile strategy using actual hourly values of r (cyan) along with forecasted quantiles for the
power production from the NWP ensemble system. All forecasts are issued at 00 UTC.

Hence, switching from an ANN to another non-linear black

box model will probably not result in significantly better

performance. However, better performance could perhaps

be achieved if a recurrent structure is tried, exploiting the

correlation in time between the forecasted values.

The input consisted of information about measured net

production and net consumption from the previous day along

with an NWP forecast for the next 24 hours. In a real

situation the forecast has to be available well before the

Elspot market closes at noon on the day prior to delivery.

Hence the forecast horizon needs to be stretched to 42 hours

using the forecasts started from 06 UTC. Such considerations

should be the subject of further studies. What to include in

the input vector is another question for further investigations.

Here we picked information we thought was reasonable. No

evaluation was made regarding how useful different input

parameters were for the prediction. The reason why the

linear model works well could be that the task is to forecast

total power production over a quite large area. In this case

the response to the input should become smoother than if

the forecast would refer to an individual site and maybe this

renders the problem more linear. It would also be interesting

to see if switching NWP data from MEPS, with its 10

members at 2.5 km grid resolution, to the 50 member IFS

ensemble from ECMWF at 18 km resolution, affects the

performance of the power forecast. A previous study has

shown that the ensemble mean from MEPS performs better

than that of IFS when it comes to predicting GHI and DNI

over Sweden, [13]. Such a study should ideally be carried

out over a longer time period than three months.

The ANN model for power prediction was then used

in a market simulation experiment with the purpose to

evaluate the OQS strategy, based on a probabilistic view and

ensemble forecasts, and investigate its effect on the resulting

imbalances. The simulation was run for the period April

- June 2017 using power measurements from the regional

network described above along with electricity price and

regulation cost data for the Elspot SE3 area. The solar

power producer was assumed to be a price-taker, without

market influence, participating in the market with the aim

of maximizing the expected revenue. Using the OQS, either

with a perfect or a persistence forecast of the regulation



costs, resulted in increased revenues compared to a deter-

ministic strategy based on the ensemble mean. However, the

use of OQS also resulted in more imbalanced energy being

produced.

Even if the previous study by Pinson et. al [1] on using

OQS for trading wind power was made for a different

time period and a different Nord Pool area it could still

be interesting to compare some figures. In case of wind

energy the use of a good deterministic forecast reduced

the imbalanced part from 74 % to 41 %. For the solar

case the corresponding drop was from 49 % to 27 %. The

reason for the difference in offset is probably that the diurnal

structure of the solar resource makes it easier to predict. The

corresponding figures for the increase in performance ratio

are 79 % to 87 % for wind and from 95 % to 97 % for the

solar case. Turning to the probabilistic case, the imbalanced

part then increased to 55 % for wind (r from last quarter)

and to 32 % for solar (perfect forecast of r). In this case the

performance ratio increased to 92 % and 99 % respectively.

With a good prediction of the relation between prices for

up- and down-regulation (the percentage point) a trader using

the OQS strategy will generate imbalances that are in line

with the need of the TSO, since this relation reflects the

sensitive of the TSO to the sign of the system imbalance.

However, this result is only true as long as the actors using

this strategy do not affect the market. If a vast majority

of the wind and solar energy producers would employ this

same strategy it might no longer be optimal, given that their

share of the production is non-negligible. Their prediction of

regulation prices may suffer from the same systematic errors

and hence result in all producers opting for the same sign

for the imbalance. In such a situation the use of the OQS

strategy may instead act destabilizing on the power system.

To conclude, we have shown that a linear or ANN model

can be used to predict the total net power production in a

regional network on the 100 km scale with a normalized

RMSE of about 6 %. Moreover, such a model can be used

in conjunction with an optimal quantile trading strategy and

NWP ensemble data to increase the revenue with about

2 % (if actual regulation prices are used) compared to a

deterministic strategy based on the control member or the

ensemble mean. This comes at the expense of increased

imbalances compared to trading with a deterministic power

forecast. The effect ranges from negligible, when assuming

persistence for the regulation prices, to an increase in the

amount of imbalanced production of almost 20 % if the

actual regulation prices can be predicted.
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