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ABSTRACT: This paper deals with the prediction of the net load from photovoltaic installations. The forecasts were 
only based on information from a numerical weather prediction model and measured net load. The study thus tackles 
the problem of estimating the contribution of PV power to the grid without knowing the actual production and 
consumption “behind-the-meter”. The main approach using a physical model was compared with persistence 
(forecast with yesterday’s values) and black box models represented by linear regression and an artificial neural 
network. The artificial neural network performed best with a normalized (with installed power) RMSE of about 10 %. 
Linear regression was only slightly inferior while the physical model performed worse (about 15 %). The physical 
model only predicts the gross production and needs information about the on site consumption in order to predict the 
net load. Here the consumption was predicted using persistence. This assumption did not hold up for the physical 
model to match the performance of the black box models. Thus, a better description of the gross consumption is 
needed in order to make the physical model more competitive. 
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1 INTRODUCTION 
 

Meeting a growing worldwide demand for energy, 
while addressing climate change, is a challenge. One way 
of tackling it is to increase the generation of renewable 
energy, such as solar PV power. Renewable energy 
depends on weather conditions and high quality forecasts 
are required by transmission system operators, 
independent services operator (ISOs), grid owners and 
energy suppliers for managing the energy mix, 
maintaining grid balance and trading on the energy 
market. As an example, reducing the forecast error by 
just 0.1 percentage points is said to save the California 
ISO and California ratepayers more than $2 million per 
year [9]. 

In order to make a good PV power forecast for an 
installation, information about its orientation, installed 
peak power and geographical location is needed along 
with a reliable prediction of the relevant weather 
parameters. However, for most behind-the-meter (BTM) 
systems producing electricity primarily for on-site use, 
before delivering excess energy to the grid, only data 
about installed nominal power and the address is 
recorded. 

Moreover, measurements of BTM PV generation are 
scarce. What is available is the measured net load which 
does not equal actual electricity consumption/production 
since some portion of it may come from BTM solar PV 
generation. This causes a disconnection between the 
measured load and the electricity demand, when the 
former is used in models to predict the electricity 
demand. This problem will be worsened with a growing 
portion of solar power and adoption of BTM storage, 
vehicle charging and time dependent electricity rates for 
instance, introducing more factors that influence the 
forecast accuracy. Further, the solar power is an unstable 
and difficult to predict source of energy which increases 
forecast errors and uncertainties in predictions used for 
planning and day ahead trading. 

Here we describe a method to estimate parameters in 
a physical PV model (PVLIB Python, [5]). The 
estimation is based on hourly numerical weather 
prediction (NWP) data, net load measurements and an 
average daily cycle of the gross electricity consumption. 
Information about the latter is assumed to be obtained 

from net load measurements prior to the PV installation. 
The model is then used to forecast net electricity 
production (here defined as the gross production minus 
the gross consumption) under the assumption that the 
gross consumption can be predicted using persistence 
(only weekdays considered here). The result using this 
model was then compared with persistence and black box 
models represented by linear regression and an artificial 
neural network (ANN) using NWP data and measured net 
load from the previous day as input. 

The aim of the study presented in the paper is to 
develop a model for predicting regional net PV power 
production and estimating its parameters when BTM PV 
measurements are unavailable. Ultimately the goal is to 
predict PV power production at different scales in a 
regional electricity network, e.g. in terms of total 
production, production per entry point or per secondary 
substation. 

Previous work (e.g. [4, 12]) has tackled the problem 
with the general lack of BTM measurements of PV 
production by up-scaling information from a few well 
monitored representative sites. However, finding such 
representative sites could be difficult since there are no 
requirements on measuring the gross production. 

In this study we do use BTM measurements of gross 
consumption. However, we assume that the daily cycle of 
the mean hourly gross consumption can be estimated 
based on data prior to the PV installation when BTM 
measurements are not available. Such consumption 
patterns are well-studied and known to be predictable. 
However, once a PV installation is in place the 
consumption pattern may very well change [9]. Our 
approach could be extended to take this into account by 
also including a model for the daily cycle of the average 
hourly consumption pattern in the optimization. 
 
 
2 DATA 
 

 In this section we describe the data used for the 
study. It consists of two parts; measured energy 
production and consumption, along with NWP forecasts 
for the corresponding dates. Both data sets consist of 
hourly data covering the time period March - October 
2016. 
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Figure 1: Left: approximate location of the Linköping network. Right: NWP grid points (red) and PV installations (yellow). 
 
 The data was divided into one training set, consisting 
of 80 % of the data (3360 hourly values per site), and one 
evaluation set with the remaining 20 % (840 hourly 
values per site). The division was made with a random 
sampling using a uniform distribution. This was done in 
order to end up with similar probability distributions for 
the training and evaluation data sets. 
 
2.1 Measured production and consumption 

The electricity measurements were provided by 
Tekniska verken that is responsible for the electrical grid 
in the Municipality of Linköping, parts of the 
Municipality of Mjölby and large parts of the 
Municipality of Katrineholm in Sweden. Hourly 
measurements of BTM PV production are available from 
11 out of the 220 sites with PV installations in the 
Linköping net, see Fig. 1. Since we only had data from 
sites with PV installations and only from the year 2016 
we had no information about the gross consumption prior 
to the installations. Instead we were restricted to use data 
from the 11 sites where this information was available. 
Two of these 11 sites were left out due to changes in their 
installations during the time period. The remaining 9 
installations are located on the roofs of five households, 
four apartment complexes and one office building. For 
each installation information about the geographical 
location and the installed effect is also known.  
 
2.2 NWP model data 

NWP data was obtained from MetCoOp 
(Meteorological Co-operation on Operational NWP) 
where the meteorological services of Sweden, Norway 
and Finland run a common ensemble prediction system 
(MetCoOp EPS - MEPS). MEPS is developed in the 
framework of Aire Limitée Adaptation Dynamique 
Developpement InterNational (ALADIN) - High-
Resolution Limited Area Model (HIRLAM) NWP 
system. The system can run with different configurations. 
Here we used the current cycle (40h1.1) of the HIRLAM-
ALADIN Regional Meso-scale Operational NWP In 
Europe-Application of Research to Operations at 
Mesoscale (HARMONIE-AROME) [2]. The radiation 
model is based on the radiation scheme by Morcrette [10] 
and uses the Rapid Radiative Transfer Model of [8]. The 
model domain contains 900x960 points with 2.5 km grid 
spacing (see example in Fig. 1) and 65 levels covering  

 
a Nordic region. For this study we only used the 
deterministic MEPS control forecasts started at 00 UTC 
with a length of 24 hours. The parameters of our interest 
were accumulated hourly values of GHI and DNI 
together with instantaneous values of two meter 
temperature and 10 meter wind speed. 

 
 
3 PV MODELS 

 
To predict the net load we employed a physical 

model and included three statistical ones for comparison. 
By a physical model we here mean a model that 
simulates the physics of the PV power production based 
on information about the module characteristics, its 
orientation and the state of the atmosphere. The statistical 
models are here represented by persistence, linear 
regression and an ANN. In order to estimate the 
parameters of the physical model we need some 
information about the BTM production. This is not the 
case for the statistical models which can be fitted directly 
to the measured net load. 
 
3.1 Physical 

As a main approach, PVLIB Python was used to 
model the BTM PV power production. This is a open 
source community supported tool that provides a set of 
functions and classes for simulating the performance of 
photovoltaic energy systems. It was originally based on a 
toolbox developed at Sandia National Laboratories. For 
our purposes we chose a module and inverter that should 
match common installations in Sweden were selected 
from the Sandia library in PVLIB; SunPower SPR 220 
and ABB MICRO 0 25 respectively. 

The installations at each of the 9 sites with BTM 
measurements were modelled with a scaling factor times 
the output from one module in a single orientation. This 
approach could be seen as semi physical since the 
installation may consist of modules in different 
orientations and may be affected by shading. Moreover, it 
needs to be combined with a forecast for the gross error 
consumption in order to predict the net load. The tilt, 
azimuth and scaling factor (parameter vector w) was 
estimated by optimizing the summed squared error for 
the daily cycle of the mean hourly net production using a 
Nelder-Mead simplex algorithm (Python function  
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Figure 2: Left: Example of optimization with PVLIB targeting the daily cycle of the net production (solid blue line) and the 
resulting model values (dashed blue line) at a household installation. Predicted (dashed red line) and observed (solid red line) 
gross production and consumption (green line). Right: As in left panel but for a site at an office building. 
 
scipy.optimize.fmin): 
 

�∗ = argmin 
(�̅��(�, �� − ��̅�(�� 
                                          −��̅��(�� − ��̅�(�����. (1) 

 
 Here the observed (superscript o) net (subscript n) 
and gross (subscript g) production and consumption for a 
given day and hour is related as: 

 

���(�, �� − ���(�, �� = ���(�, �� − ���(�, ��.     (2) 

 
Now, including the net consumption in the modelled 

(superscript m) net production (i.e. modelling the 
negative net load), the daily cycles of the mean hourly 
values are calculated as: 
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��
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for the hourly intervals t = 0−1,…,23−24 UTC during the 
time period March – October 2016. 

Here, the mean daily pattern of the gross 
consumption was calculated with data from the training 
data set. In practice, this information could be derived 
from measurements of the load (N.B. not BTM) during a 
time period before the PV installation was made. 

Once the optimal PVLIB model parameters are 
estimated we have a physical model for the hourly gross 
(BTM) production. This model can then be used to 
predict the net PV production by assuming persistence 
for the gross consumption, i.e. that cg(d+1,t) ≈ cg(d,t). 
Hence the gross consumption can be eliminated from the 
equation and the net production predicted as: 

 

��(� + 1, �� = ���(�, � + 1, �� − ��(� + 1, ��     (6) 

≈  ���(�, � + 1, �� − ��(�, ��                         (7) 

= ��(�, �� + ���(�, � + 1, �� − ���(�, �, ��.  (8) 

 
The idea is that the daily pattern in the gross consumption  
 

 
is more stable than either the daily net or the daily gross 
production. This leads to a model for the net load that is 
given by persistence modified with the difference in 
gross production between the day ahead and today. 

 
3.2 Statistical 

Another alternative is to turn to statistical or black 
box models and model the net load directly. Here the idea 
is to fit a parametric model to the data. The assumption is 
that the residual is given by some model noise source 
when the optimal parameters have been estimated. 

 
3.2.1 Persistence 

The persistence model does not involve any  
parameter estimation and the input is the same as the 
output - the observed value for the corresponding hour 
from the previous day: 
 

 ���(� + 1, �� = ���(�, ��, � = 1, … ,24.         (9) 
 
3.2.2 Linear least squares 

The linear and the ANN model have different 
parameters but share the same input. As input parameters 
(x) for these two models we used NWP forecast data (for 
the next 24 hours as well as for the past 24 hours) 
together with measured net load from the previous day. 
The idea behind this is that model should be able to make 
a connection between yesterday’s state of the atmosphere 
and the net production. We also included the cosine of 
the solar zenith angle to provide some information about 
the time of the day and the season. It should also help to 
account for the effect of PV on tilted surfaces. For the 
linear model we also added a constant to the input vector 
in order for the model to be able to add a bias. 

The linear model is given by 
 

���(�, � + 1, �� = �&'.   (10) 
 
We assume that the residual error is described by a 

normal distribution and employ a linear least squares 
method to estimate the model parameters (Python 
function numpy.linalg.lstsq):    
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Table I: Model performance in terms of mean r2 values and RMSEn for gross PV production using PVLIB and persistence at
the different sites (mean value, H:household, A: apartment block, O: office). 

  

  Mean H1 H2 H3 H4 H5 A1 A2 A3 O1 

PVLIB r2 0.80 0.80 0.80 0.78 0.82 0.78 0.81 0.79 0.80 0.82 
Persistence r2 0.45 0.46 0.45 0.48 0.42 0.44 0.45 0.43 0.43 0.46 
PVLIB RMSEn [%] 11 11 12 10 11 11 11 11 12 9.2 
Persistence RMSEn [%] 21 18 22 17 29 18 18 29 21 17 

 
 

�∗ = argmin ∑ ∑(�&' − ���
�(�, �� − ��

�(�, �����   (11) 

 
3.2.3 Artificial neural network 

Using machine learning to train non-linear models 
has a long history within the area of energy forecasting 
[11, 6]. Here we used an off the shelf ANN from 
TensorFlow [1] to see if it a non-linear black box model 
could offer some improvements. 

Using the standard feedforward ANN 
(DNNRegressor) from TensorFlow we set up a network 
with a three layer feedforward topology with one input, 
one hidden, and one output layer. In our set up it had 11 
inputs, 32, 64 or 96 nodes in the hidden layer and 1 node 
in the output layer. 

Determining the number of hidden neurons in the 
hidden layer(s) is a trade off between the networks ability 
to generalize from the training data (not too many 
neurons) and its representative power (not too few). Here 
we were guided by the empirical relation for the number 
of hidden layer neurons proposed by [6]: nhl = 
0.5(nin+nout) + (ntrain)

1/2, where nin , nout and ntrain denote 
the number of input, output and the size of the training 
data set respectively. In our case the number of inputs 
equals 11 and we have one single output (the net load). 

The number of cases in the training data set was 
3360. Hence the suggested number of nodes in the hidden 
layer becomes 64. To check the robustness of this choice 
we also tried with 32 and 96 neurons in the hidden layer. 
The network with 32 neurons actually performed slightly 
better than the others on the evaluation data set so the 
results presented here are based on the outputs from that 
network. 

In order to harmonize the amplitudes of the input 
variables we remove the mean (m) and normalize the 
input vector by multiplying it with the inverse of the 
square root sample covariance matrix (C), calculated 
from the training data set. The TensorFlow minimization 
algorithm then finds the solution to  

 

�∗ = argmin ∑ ∑(��
&((�), *+,

-(' − .�� −
                                         ���

�(�, �� − ��
�(�, �����            (12) 

 
using an iterative procedure. We ran the minimization for  
10,000 iterations (saving the result at each 100:th 
iteration) at which point the error for the evaluation data 
sets had started to increase for all sites. The prediction 
network was then given by the parameters from the 
iteration for which the evaluation error had a minimum. 
 
 
4 RESULTS 
 
 In order to evaluate the performance of the different  
models we compared the models by looking at the root  
mean squared error (RMSE) normalized by the nominal 
installed power (RMSEn). We also calculated the square 

of the Pearson’s correlation coefficient (r2) between the 
modelled and observed net load. Only hours when the 
sun was over the horizon were included in the 
calculations. 
 First we look at the results for the main approach 
using PVLIB. Fig. 2 shows two examples of the fit of the 
optimized PVLIB model (blue dashed line) to the 
measured net production (Pn−Cn)o (blue solid line) which 
is the error criteria in equation 1. Using the model to 
predict gross PV production (dashed red line) results in a 
good fit to observed values (red solid line). The left and 
right panels show the results for a household and an 
office building respectively. Here the daily pattern for 
gross consumption (green lines) of the household shows a 
typical structure with peaks during the morning and 
afternoon while the other installation shows a 
consumption patterns related to the office hours.  
 Table I summarizes the error measures for the nine 
installations when using the PVLIB to model the gross 
production, which is an essential part of the physical 
approach. The average RMSEn for the PVLIB and 
persistence models are 11 % and 19 % respectively. Note 
that the error does vary much between different type of 
installations. 
 The daily cycles of the mean RMSEn when using 
PVLIB to model the gross consumption are illustrated in 
Fig. 3. The error corresponding to a persistence model is 
included for comparison. The error is shown as a function 
of forecast length. All forecasts are initialized at 
00 UTC and the PVLIB based approach outperforms 
persistence for all forecast lengths. 
 We then turn to the prediction of the net load, now 
also including the statistical approaches. Table II 
summarizes the error measures for the nine installations 
when using the four different models; PVLIB, linear, 
ANN and persistence. The errors for both PVLIB and 
persistence are larger when predicting the net load 
compared to the errors for the gross PV forecasts. The 
reason is that the physical model now also needs 
information about the hourly gross consumption. 
Assuming persistence for the gross consumption turned 
out to be problematic. The r2 values for such predictions 
varied between 0.10 and 0.83 for the nine sites. This 
shows that the gross consumption was less stable over 
time than we had thought. 
 The statistical models all perform better compared to 
the physical PVLIB approach. The ANN performs best 
on average with an r2 value of 0.76 followed by the linear 
model (0.71), PVLIB (0.62) and persistence (0.40). The  
same order goes for the RMSEn where again the ANN is 
best with a mean value of 11 % followed by the linear 
model (12 %), PVLIB (16 %) and persistence (20 %). 
Note that there is a difference in the r2 values between 
different sites for the net load predictions. The correlation 
for the office site is notably smaller for all the models 
even though only weekdays are included in the data. 
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Figure 3: Left: Daily mean RMSEn cycle for the gross PV predictions (persistence: red, PVLIB: green). Right: Daily mean 
RMSEn cycle for net load predictions (persistence: red, PVLIB: green, linear model: blue, ANN: magenta). 
 
 The daily cycles of the mean RMSEn, when using 
PVLIB and the statistical models to forecast the net load, 
are illustrated in the right panel of Fig. 3. Again, the error 
is shown as a function of forecast length and all forecasts 
are initialized at 00 UTC. The ANN performs best, 
followed by the linear model, PVLIB and persistence. 
For the linear and ANN models the error grows 
somewhat towards the afternoon. This can be explained 
by the NWP forecast deteriorating with the length of the 
forecast. In the afternoon the performance of the PVLIB 
models becomes very similar to that of the persistence 
model. The reason for this is likely due to its dependence 
on the persistence forecast for the gross consumption. 
The error in the latter is high in the late afternoon when 
there is a peak in the consumption. 
 
 
5 DISCUSSION AND CONCLUSION 
 
 Solar radiation is fluctuating in time and space and is 
non-trivial to predict. When a day-ahead forecasts is 
needed NWP models offer the best information [3]. 
However, in order to turn the solar radiation into a PV 
production forecast information about the geography and 
geometry at the installation is needed. 
 In this paper we studied how one physical and three 
statistical models performed on the task to predict the net 
load at a single site for the coming day. The input 
consisted of information about measured net production 
and net consumption from the previous day along with a 
NWP forecast for the next 24 hours. In a real situation the 
forecast has to be available well before the electricity 
market closes at about midday and hence the forecast 
horizon needs to be stretched to 42 hours. Such 
considerations will be the subject of further studies along 
with up-scaling of the forecast to an area of a regional 
electricity network. 
 The results show that it is possible to estimate the 
parameters in a physical model (PVLIB) based only on 
the daily cycle of the mean hourly net production and 
gross consumption. Information about the latter can be 
assumed to be available from load measurements during 
a corresponding time period prior to the PV installation. 
However, the pattern of consumption may change after 

the installation has come into place [9], e.g. by the  
purchase of an electric car or by considering the 
electricity produced BTM to be available free of charge. 
On the other hand, our modelling approach using PVLIB 
opens up for the possibility to include a model for the 
daily cycle of the average hourly consumption pattern, 
e.g. by doing a principal component analysis of a data 
base of consumption patterns and describe the pattern 
with a few eigenvectors in the optimization along with 
the PVLIB model parameters. In this way both the BTM 
production and consumption could be included in the 
optimization. 
 The physical model based on PVLIB shows good 
results when checked against the gross PV production. 
This means that both the NWP and the PVLIB models 
perform well. However, here the puropose was to predict 
the net load and for this purpose the physical model was 
outperformed by the black box models (linear and ANN). 
A likely reason for this is that the physical approach calls 
for an additional model for the hourly gross consumption. 
The gross consumption was predicted using persistence 
but this assumption turned out to be too weak. 
 Using an off the shelf ANN from TensorFlow 
reduced the overall RMSE, normalized with installed 
power, with only one percentage unit compared to the 
linear model. However, looking at the error with respect 
to forecast length reveals that the ANN actually provides 
a better prediction. Earlier studies have shown that the 
choice (e.g. the ANN) between different non-linear 
models is not critical [7]. 
Even better performance could perhaps be achieved if a 
recurrent structure is tried, exploiting the correlation in 
time between the foretasted values. One could also think 
of using a hybrid approach where the gross production is 
modelled with PVLIB and the gross consumption is 
modelled with an ANN. What to include in the input 
vector is another question for further investigations. Here 
we picked information we thought was reasonable. No 
evaluation was made regarding how useful different input 
parameters were for the prediction. Future work should 
also look at using input from probabilistic NWP 
forecasts. This should be a way to describe and account 
for uncertainties in the solar radiation forecasts. 
 To conclude, we have shown that a physical model 

 

                  This is a pre-peer review version of the paper submitted to the journal Progress in Photovoltaics. 

It has been selected by the Executive Committee of the 35th EU PVSEC 2018 for submission to Progress in Photovoltaics.

35th European Photovoltaic Solar Energy Conference and Exhibition

1688



Table II: Model performance in terms of mean r 2 values and RMSEn for net load using PVLIB, a linear model, an ANN 
and persistence at the different sites (mean value, H: household, A: apartment block, O: office). 
 

  Mean H1 H2 H3 H4 H5 A1 A2 A3 O1 

PVLIB r2 0.62 0.63 0.66 0.59 0.70 0.67 0.55 0.67 0.68 0.41 
Linear r2 0.71 0.69 0.78 0.74 0.78 0.78 0.60 0.76 0.77 0.49 
ANN r2 0.76 0.74 0.81 0.77 0.82 0.81 0.65 0.82 0.81 0.63 
Persistence r2 0.40 0.44 0.44 0.42 0.47 0.45 0.31 0.45 0.46 0.18 
PVLIB RMSEn [%] 16 16 17 16 15 16 15 16 16 16 
Linear RMSEn [%] 12 13 13 12 11 12 12 12 12 12 
ANN RMSEn [%] 11 12 12 11 10 11 11 10 11 10 
Persistence RMSEn [%] 20 20 23 19 19 20 18 20 20 18 

 
 
can be estimated and used to predict the gross PV 
production in the absence of BTM data. However, it was 
outperformed by statistical black box models such as 
linear regression and ANN when it comes to forecasting 
the net load. 
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