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Sammanfattning

Syftet med projektet #r att utforska vilka mojligheter ett Overlagrat
kommunikationssystem  tillfor framtidens kraftelektroniksdominerande
elkraftssystem. Mer specifikt kommer projektet att fokusera pa lokala/distribuerade
fjarrmétningar for att uppskatta viktiga systemparametrar for att fa en okad
observerbarhet i elkraftssystemet. Mitningarna kommer att anvidndas for att
uppskatta den frekvensberoende impedansen hos elkraftssystemet sett fran en
specifik anslutningspunkt. Olika systemforhallanden, fran stationira till dynamiska
tillstdind orsakade av storre storningar, till exempel kortslutningar, kommer att
utvdrderas. Olika metoder for att uppskatta den frekvensberoende impedansen
kommer att analyseras och jamforas. Projektets slutmal &r att tillhandahalla
forstaelse och ett system av algoritmer for att i realtid uppskatta kraftsystemets
impedans vid en specifik anslutningspunkt for ett stort frekvensomrade, vilket kan
anvindas for en mer robust styrning av nitanslutna omriktare.

Summary

The aim of this project is to exploit the opportunities that an extensive layer of
communications will bring in the future power-electronic dominated power system.
In particular, the project focus is on using local and remote measurements for
system parameter estimation to enhance the observability of the power system. The
acquired measurement information will be used to estimate the frequency-
dependent impedance of the power system seen from a specific connection point.
Several system conditions, from steady-state to fast dynamics due to large
disturbances, i.e., short-circuit faults, will be considered and investigated. Different
estimation methods will be analyzed and evaluated. The final goal of the project is
to provide a fast-online measurement of the power system impedance at a specific
connection point for a wide-frequency range, to be later used for robust control of
grid-connected converters.

Inledning/Bakgrund

The high penetration of renewable energy sources into the power grids is leading to
a widespread use of grid-connected power converters throughout the entire system.
As a result, the reliability and stability of the overall power system is more and
more dependent on the specific control strategy and parameters of the different
converter units. The equivalent grid impedance at the converter’s connection point
(or grid strength) can influence the parameters of the converter control system for
optimal performance on speed, robustness and reliability [1][2][3].

Today many new technologies are available, especially in the information and
communication technology (ICT) sector, which might allow to enable more
efficient and effective solutions than the traditional ones. In the future, there will be
a need for advanced technologies, especially involving the integration of ICT and
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the power electronics for planning, managing, monitoring, controlling and
delivering electricity in a safe and reliable way. Meanwhile, increasing the
flexibility and efficiency of the power system. This is the core of the digitalization
process of the electric power systems, where the combination of advanced power
technology together with an extended layer of communication will enable to
increase the performance of the power system by taking advantage of the
observability introduced by the ICT and the controllability offered by the different
power-electronics based devices connected to the system.

Modern measurement systems and, particularly, communication systems (i.e.,
based on 5G technology) open up new possibilities to provide the controllers with
more information on the surrounding environment. Today, the power system is
already provided by several dedicated measurement equipment, such as energy
meters and Phase Measurement Units (PMUs). In the future, it is possible to
imagine that system measurements will not only be provided by dedicated units.
Any grid-connected converter (HVDC, FACTS, wind turbine converters, solar PV
inverters, etc.) that is already equipped with high-bandwidth current and voltage
sensors for local control. Thanks to ICT, it is possible to assume that these sensors
will be used as remote measurement points and relevant information can be shared
among different power-electronic devices for monitoring and control purposes, as
depicted in Figure 1. Thus, this new kind of “ancillary service” will reduce the need
for installing new measurement units. However, the converters need to be equipped
with a standardized communication unit that handles time-stamped data (for
example, through a GPS signal) to synchronize the spread-out measurement
locations. When more relevant measured signals are provided to the control process,
the need to use feedback signals to handle system uncertainties (model errors, non-
modelled subsystems, external disturbances etc.) in the process decreases. This
would not only enhance the controllability of the power converters, but would also
make the system more robust against system disturbances and at the same time
reduce the risk for induced stability problems and control/hardware interactions [4].

In a longer perspective, the wide-spread use of power-electronic converters will add
new requirements on the implemented control systems. It is not sufficient that the
regulated quantity tracks its reference value despite of disturbances that appear in
the system or in the short-circuit power level of the system. The control system
must be designed so that it does not interact in an adverse way with other converters
connected to the same power system. Thus, it should be possible to install new
devices without the need of re-tuning the controllers of the existing ones.
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Figure 1. Example of power-electronics dominated grid with communication (green lines)
between converters

It is under this scenario that this project aims at developing Artificial Intelligence
(AI) based methods to analyze the use of local and remote measured data to estimate
the frequency-dependent grid impedance at a specific location of the grid. At an
early stage of the project, an extensive literature review has been performed on the
existing grid impedance estimation methods. This study has shown that the existing
methods fall short in dealing with a large amount of data, especially time-series
data. Further, impedance estimation methods that use the Discrete Fourier
Transform (DFT) to extract harmonic impedance must comply with DFT limits
(e.g., Nyquist frequency, need for use of windowing techniques, etc.), and they have
limited functionality during transient conditions, especially when dealing with very
high-speed transients such as short-circuit faults. This project proposes the use of
an Al-based approach to address the above-mentioned issues. The applied method
is a mixture of deep learning (DL) and machine learning (ML) techniques. Since
the input signal is a three-phase time-series data (three-phase voltages/currents), a
long-short-term-memory (LSTM) technique is applied for feature extraction
purpose, and a random forest (RF) method has been used to map the extracted
features by LSTM model to the grid impedance, which is calculated analytically.
The results show the effectiveness of the proposed method for estimating the
frequency-dependent grid impedance for a wide range of frequencies.

According to the obtained results, remote measurement of three-phase voltage
/current signals is essential to estimate grid impedance more accurately. Thereby,
the next step is to find out the optimum location and numbers of remote
measurement nodes to increase the accuracy of the proposed method.

Several grid impedance estimation methods have been proposed in the literature,
which can be divided into passive and active methods [3][5]. The passive methods
operate at steady-state condition as state-estimators of the fundamental frequency.



521)
Energimyndigheten

Most often they use time-domain voltage and current data as inputs and algorithms
such as least-squares [6], Kalman filters (i.e., the Kalman filter models only
fundamental frequency) [7], wavelets [8] to estimate the Thevenin model of the
power grid. On the other hand, active methods aim at detecting the grid impedance
for range of frequencies. Active methods mainly consist of two types: invasive
[9][10] and non-invasive ones [11]. The non-invasive methods use some existing
harmonic sources due to large disturbances (e.g., electrical faults, nonlinear load
switching, transformer/ capacitor energizing, power converter switching, and many
more) to indicate the frequency-dependent power grid impedance around the
oscillation frequencies. Kalman filters (i.e., the Kalman filter models several
harmonic frequencies) [12], machine learning-based regression methods [13] are
examples of practical non-invasive ones.

Invasive methods use the direct injection of the broadband excitation signal,
followed by data acquisition and finally applying signal processing techniques to
estimate the corresponding impedance at all exciting frequencies. The popular
broadband excitation signal in steady state is pseudo random binary sequence
(PRBS) signal [5][14].

The magnitude of the excitation signal needs to be appropriately designed to extract
the impedance variations. The desired magnitude of PRBS should be small enough
to ensure that the system stays around its operating point. However, it should be
sufficiently large to reject noise disturbances. In general, the magnitude of the
excitation signal is chosen between 5% and 10% of steady-state values [5].

The main challenge of active methods is time burden since the active method uses
discrete Fourier transform (DFT) to extract the frequency components of the
measured data. DFT needs at least one cycle of data for each frequency component,
resulting in considerable computation burden especially for estimation in the lower
cycle frequencies. Moreover, to cope with noise impact, the signal injection should
be repeated several times or applied for more cycles [5]. Further, during transient
state, the signal injection approach is not effective since the background harmonics
(i.e., nonstationary harmonics and phase-shifted harmonics) change during the
estimation process [15].

The aim of this project is using deep learning techniques to estimate the grid
impedance at both steady-state and transient conditions of the power grid. In
particular, the goal is to propose an unsupervised sequential deep learning method,
LSTM-Autoencoder (LSTM-AE) with a dedicated architecture, to extract time-
dependent feature vector sequences from measured data at several locations of the
power grid. A random forest (RF) regressor is then employed to estimate the
frequency-dependent grid impedance during large disturbances. It is shown that
using the extracted feature sequences instead of original data sequences leads to
improved grid impedance estimation. To test the effectiveness of the proposed
scheme, a grid-connected power converter is simulated, where voltage and current
time-series are collected at local and some other remote points. The collected data
sequences are then fed into the proposed scheme for feature extraction and
frequency-dependent impedance estimation.
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Genomforande

The project has been conducted based on a pre-defined time plan that has been
closely followed. Generally, detailed studies have been done on various methods
for grid impedance estimation and they are implemented in MATLAB simulation
environment to compare their results with proposed method. The same simulation
setup was applied to generate synthetic local and remote data and conducting
comparative analysis. The proposed method implemented in TensorFlow/Keras
environment. The results are provided by Azam Bagheri (Postdoc at Chalmers), in
cooperation with Prof. Massimo Bongiorno (project leader, Chalmers) and Prof. Jan
R. Svensson, Hitachi Energy Research (earlier ABB Corporate Research) and
Adjunct Professor at Chalmers. Together with this report, outcome from this project
are one journal and two conference publications.

Proposed Method

To estimate the grid impedance, the basic idea is to use unsupervised automatic
feature learning technique to extract the sequences of time-dependent features of
dynamic power grid data. Given time-dependent features, a nonlinear regression
method is exploited to derive a nonlinear function that maps the features to the
corresponding grid impedance phasor.

Simulation Setup

Based on mentioned idea we propose a new scheme as shown in block diagram of
Figure 2. The red dash box in Figure 2 shows a utility power grid system used to
generate synthetic data for training introduced modules. The blue dash box shows
two main modules of the proposed method as follows:

1. An LSTM-AE architecture [16] for unsupervised automatic learning of
time-dependent feature sequences form dynamic power grid data (e.g.,
symmetrical components of three-phase voltage and current data);

2. Anon-linear RF regression method for estimation frequency-dependent grid
impedance. The RF regressor takes the features extracted by LSTM-AE
module as an input and derives a nonlinear map function between input
feature and values of grid impedance in wide range of frequency.

The inputs to the blue box are time-series three-phase voltage/current data and the
output is grid impedance seen from bus B1 for a wide range of frequencies, namely
Z(jw). Further, details of the individual modules are given in the following part of
this report.



721)
Energimyndigheten

r |r Load 1 :
- S |E§l Tzso KW PI-link Line 132'
A | F 1.
i@ H S HED-O
Lom P2iail T | T2 132KV
Converter  LC-Filter | B3 =t : 50 Hz
| | 63 MVA
| !
| e g |
' = 3
| o i :
| !
' Load 2 |
| 2 MW |

| |

Il Symmetrical- | 4, [n] Extract feature |y[n] Frequency-dependent |l Z(jo)
Ii component ———» time sequences —®| Impedance estimation 4|—>

| Transform i12; [n] by LSTM-AE By RF regressor ||
| I

Vabe [Il]

Iabc [Il]

Figure 2. The overall schematic of the proposed method: power grid (red dash line box), the deep
learning-based nonlinear estimator (blue dash line box).

Measurement Data

To estimate the grid impedance seen from node B1 in Figure 2, the three-phase
voltage and current data are measured at that node and two other remote nodes (B2
and B3 in Figure 2) of the power grid. The discrete sampled three-phase signals are
transferred into symmetrical components through:

x1[n] 1 a a?]|Xan]
[1 a? a] xp[n] (1)
1 1 11|x.[n]
where n is the sampling point in the time domain, x,[n], x,[n] and x.[n] are the
discrete three-phase time-series voltage and current phasors, x;[n], x,[n], and
xo[n] are the corresponding discrete positive-, negative- and zero-sequence
components, respectively, and a = e027/3),
The measurement duration is one grid cycle (20 ms at 50 Hz), and the sampling
frequency is 10 kHz. At each point, we measure both voltage and the current
phasors, resulting in 18 different features. To synthesize the training dataset we
increased the 7, [, and ¢ parameters of the PI-link model of the transmission lines
gradually by 10% through 3 nested loops. For each new value of parameters, we
collect the measurement data at local and remote nodes as input features. In
addition, we measured magnitudes and angles of the corresponding grid impedance
at node B1 using the sin-sweep method [17]. The sweep frequency range starts from
5 Hz through 765 Hz using frequency interval of Af =5 Hz.
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Feature extraction from data sequences by LSTM-AE

To automatically learn the time-dependent sequential features from the
measurement data, a LSTM-AE module is exploited. Dealing with time-series,
recurrent neural networks (RNN) and especially the LSTM networks are shown to
be the suitable choices [18]; furthermore, LSTM-AE is particularly suitable for
unsupervised learning of data sequences [19].

In the proposed LSTM-AE architecture the encoder consists of one input layer and
two LSTM-AE layers (see Figure 3(a)). The LSTM-AE layers contain 16 and 8
units, respectively. Each LSTM layer followed by a nonlinear activation function
ReLU (Rectified Linear Unit).

The original 2D matrix X (i.e., 200 samples of 18 features), obtained from (1), is
reformed into 3D by partitioning one cycle data into 10 sub-cycles (i.e.,
{X }200x18 = {Xo}20x18 » - {Xo}20x18})- As shown in Figure 3(a), the input layer
takes 1st sub-sequence X, = {s, ..., S19} and applies it to the 1st layer. The output
of 2nd layer extracts the sequential features of current sub cycle denoted by y[n].

Figure 3(b) shows that applying each sub-sequence of one cycle data to the encoder
results in one sequence of time-dependent features. We concatenated these 10
feature-sequences and provided them to RF regression module as the input.

Table 1 summarizes the architecture of the proposed LSTM-AE and Figure 3(c)
shows the block diagram of proposed LSTM-AE model. Since the decoder part is
only applied during the training where its structure is the exact inverse form of the
encoder, the information of the decoder is not included in the table. In the LSTM-
AE, learning encoder coefficients are obtained through feedforward neural network
manner. Let the feature vector obtained from the encoder be:

y[n] = f(b + Wx[n]) 2)
where x[n] is the time-dependent input data, f(-) is a nonlinear function,
h(x[n]) = b + Wx|[n] is the impulse response of a linear system. The decoder is

the revers of the encoder (f ~1(+)) which aids in minimizing the overall error or the
loss function, given in (3) during the training, [20],

N
e = %;nx[n] —R[n]I3 ®)

where x[n] is an input data to the encoder, and X[n]is the reconstructed data from
the decoder.
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Figure 3. The proposed LSTM-Autoencoder; a) the overall architecture of LSTM-AE (input layer
+ 1 LSTM-AE layer); b) concatenating 10 sequences of time-dependent features extracted for 1
cycle data ¢) the LSTM-AE architecture during training process

Table. 1. Architecture of the Encoder of the Proposed LSTM-AE.

Layers # Cells #units/cell UnitInput Unit Output
Input layer [20 x 18] - -
LSTM-AE 1+ReLU 20 16 20x18 20x16
LSTM-AE 2+ReLU 20 8 20x16 1x38

Frequency-dependent grid impedance estimation using RF Regressor

We exploited a RF regression method to derive a nonlinear function that maps the
input features to the frequency-dependent grid impedance.
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A decision tree regression model has the lowest time complexity in compare with
RF and support vector machine (SVM) regression models, but it suffers from high
variances [21]. The SVM regression is slower than the random forest, in addition,
it does not show sufficiently high performance when dealing with multi-dimension
data [21].

A RF consists of a set of decision trees for ensemble average, to obtain the best
classification/estimation results [22]. Although the ensembling slows down the RF
but it reduces the high variance of individual trees and leads to precise prediction
of power system data. Given a set of input feature vectors, a RF subdivides
randomly the feature vectors into several subsets where each subset includes all
feature columns of original data, and then assigns each subset to one decision tree
[22]]23]. The decision trees grow by splitting on feature column that maximizes the
objective function (e.g., information gain) at that split. The splitting at each node is
repeated until the number of samples in the node becomes smaller than a pre-
defined value. The final selected nodes (leaves) in the trees are the outputs of
decision trees. The estimate from a RF can then be obtained by averaging over the
predictions of individual decision trees [24].

Figure 4 shows the overall schematic of the RF regressor block. The proposed RF
regressor consists of 50 decision trees where the depth of each tree can grow till
maximum 25 states. In our RF regressor, the input is the features of voltage and
currents extracted by the LSTM-AE. Then, each decision tree estimates the
magnitudes and angles of the grid impedance at desired frequency range. Finally,
the grid impedance (z(jw)) determined by taking the average of these individual
estimations (z;(jw)) where, w = 2nf denotes the angular frequency where f is
ranging from 5 Hz to 765 Hz with frequency interval Af =5 Hz.

Extracted sequential
features by LSTM-AE: y[n]

1st Tree 50th Tree

Figure 4. Decision trees of RF regressor, obtained from the training process of the proposed
scheme.
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Simulation results

In this project we used MATLAB/ Simulink environment for generating synthetic
data, as shown in Figure 2 (red dash box). The model consists of a 33kV utility grid
connected to the 132kV transmission grid though the step-up transformer T2. In
addition, a three-phase AC/ DC converter is connected at the 33 kV bus B1 through
a second-order LC filter and the step-up transformer T1. The simulated utility grid
supplies two three-phase loads rated 250 kW (Load 1) and 2 MW (Load 2). Table
2 lists the parameters of the simulated power grid.

Table. 2. The detailed parameters of the simulated power network.
Description Values

Overhead line (positive seq.), l;, ¢;,74, 1.05mH, 0.33 uF, 0.1153 Q
Overhead line (zero seq.), 1y, o, Ty, 3.32mH, 5.01 nF 0.413 Q)

Load 1: voltage, P 33 kV, 250 kW

Load 2: voltage, P 33kV,2 MW
Converter: DC link voltage, fwm, S 600 V,1980 Hz, 250 kVA
Transformer 1: V1/V2, S 415 V/33 kV, 250 kVA
Transformer 2: V1/V2, S 132/33 kV, 63 MVA

Datasets

Two synthetic datasets were generated. The first dataset (training dataset) was
generated from the power grid under the steady-state condition. The second dataset
(test dataset) was correspondent to transient situations like load change or electrical
faults (i.e., 400 different three-phase faults occurred at either fault locations F1 or
F2). To generate large synthetic dataset, the transients (either load changes or
electrical faults) were repeated where the transmission line parameters were
changed slightly.

For both datasets, the measurement nodes were at buses Bl, B2 and, B3,
respectively, shown in Figure 2. At each measurement node. We used the first
dataset for training, and the second dataset for testing.

e Training Dataset (Dataset 1): The training dataset, i.e., the first dataset
(generated from the power grid in steady state), consisted of 2000
measurement sets. Each set contained 1 cycle (200 samples) of 18 different
voltage and current streams (i.e., 3 locations, each location contained 3
voltages and 3 currents). The first dataset was then split according to 60%
(1200 measurement sets) and 40% (800 measurement sets) for the training
and the validation when training the LSTM-AE model.

e Test dataset (Dataset 2): The overall test dataset include 600 measurement
sets which is divided into 3 different subsets. First subset includes 200
measurement sets were collected when power grid is in steady-state and
Load 1 (250 kW) was changed gradually for 20% pu. The second 200
measurement sets were collected when fault occurred at fault location F1,
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and the rest 200 measurement sets were collected when the tree-phase
electrical faults occurred at fault location F2 (see. Figure 2).

It is important to note during collecting each datapoint, as mentioned, the
transmission line parameters were changed slightly thereby, the fault impedance
and the grid impedance were changed consequently. The details of training/
validation/testing for LSTM-AE and RF regression models are shown in Table 3.

Table. 3. The Size of Training /Test Datasets for both LSTM-AE and RF Regression Models.

Dataset Size Models
LSTM-AE RF
Inputsize  [1200, [10,20],18]  [1200, 80]
Training (Dataset 1) Qutput size [1200, [10,20], 18] [1200, 306]

Inputsize  [800,[10,20],18]  [800, 80]
Validation (Dataset 1)  Qutput size  [800,[10,20], 18]  [800, 306]

Inputsize  [600,[10,20],18]  [600,80]

Testing (D 2
esting (Dataset2) & ouesize  [600,[10,20],18]  [600,306]

Hyperparameters

The output of LSTM-AE were the 2000 feature vectors (i.e., corresponding to 2000
data points) where each vector contained 80 components. The output of trained RF
regressor was the estimated grid impedance matrix, with 2000 rows (corresponding
to 2000 data points) and 306 columns including magnitudes and angles of
frequency-dependent grid impedance (z(jw)). There were several hyperparameters
in LSTM-AE and RF regressor. Hyperparameters of the LSTM-AE were
optimizing learning rate (Ir), the number of LSTM layers, and the number of units
in each LSTM layer. After several experiments we decided to use 2 LSTM layers
to construct the encoder part where layers have 16 and 8 units, respectively.

Table. 4. Finding the best RF structure that minimizes MSE values through Grid Search

Depth of trees

# Decision trees 10 25 50

25 200 832 713
50 546 3.20 4.86
75 9.14 841 9.69
100 537 636 8.80

In the experiments, the learning rate was lr =0.001, number of epochs =200, and
the batch size= 50. For RF regression, grid search was conducted to find the best

12 (21)
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number of random states and the number of estimators according to the MSE
criterion. Table 4 shows the results from the grid search, where the smallest MSE
was achieved when the number of decision trees was 50, and the depth of decision
tree is 25.

Results and performance evaluation

Training and validation of LSTM-AE network

The proposed LSTM-AE architecture was trained and validated from the training
dataset, and subsequently used for extract feature vector sequences from the test
dataset. To show the proposed LSTM-AE performance, Figure 5 shows the training
and validation accuracy as well as the loss, obtained by (3), as a function of epochs.
Observing the training curves, one can see that training/validation has reached
about 95% accuracy without showing significant difference, indicating there was
no obvious overfitting.

Training-loss

Validation-loss

Loss

0 50 100 150 200

Epochs

0.6

Training-accuracy

0.5

Validation-accuracy

Accuracy

0 50 100 150 200

Epochs

Figure 5. Performance from the training and validation in the proposed LSTM-AE. (top) loss
versus epochs, (bottom) accuracy versus epochs.
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LSTM-AE network Performance on Grid Impedance Estimation

To verify the proposed estimation scheme, five case studies were conducted. The
aim of these studies was to evaluate different aspects of performance, in both
steady-state and transient conditions. The case studies verify several aspects of
performance of the proposed method including:

1. the performance of the proposed method for estimating variations of the grid
impedance magnitude at fundamental frequency (50 Hz) due to load
variations;

2. the performance of entire proposed scheme when input data sequences
included both local and remote measurements;

3. the effect of using extracted features instead of using original data
sequences;

4. the impact of adding measured data sequence from additional remote nodes
on the performance of the proposed scheme;

5. performance comparison of the proposed scheme with PRBS signal
injection method [5] in terms of accuracy, frequency resolution, and speed.

In all case studies, the performance evaluation criterion for the proposed scheme
was the mean square error (MSE) measure as:

N
1
MSEL = ﬁZ(Zi - Zi)z (4)
i=1

where z; and Z; are the ith ground-truth and predicted grid impedance values,
respectively and N is total number of values.

Case Study 1: Estimation of grid impedance at fundamental frequency

The first case study aimed at verifying the performance of proposed method for
estimating the grid impedance magnitude, at fundamental frequency, due to load
changing in steady-state condition. The three-phase load namely Load 1 was
changing for 20% pu at time t=1.5 s. The load change was taken place at power grid
steady station condition. The measurement data are time-series voltage/ current data
from both the local and remote measurement nodes. The extracted feature vector
by LSTM-AE module is fed into the RF module to estimate the magnitude and
phase of the grid impedance over time.

The corresponding MSE of the estimated impedance magnitude is 1.4. Figure 6
shows the result the grid impedance magnitude estimation at fundamental
frequency by the proposed method. The proposed method converged to the grid
impedance after 30 ms.
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Figure 6. The result of estimating the fundamental (50 Hz) grid impedance magnitude at node B1,
due to step change in Load 1, comparing with (True Imp.: true impedance).

Case Study 2: Estimation of grid impedance at harmonic frequency

The 2nd case study aimed at testing the performance of the entire scheme, where
measurement data sequences from both the local and remote measurement nodes
were used. After the LSTM-AE extracted the feature vector sequences and fed into
the RF, the estimates of the corresponding frequency-dependent grid impedances
were obtained. Table V shows the results of the proposed scheme in terms of MSE
measure.

Observing the 3rd row in Table 5, MSEs of estimated impedances were of 1.3 and
3.2, respectively. For each fault location (F1 or F2) we used all corresponding 200
datapoints for test and the shown MSE in Table 5 is the average of 200 obtained
individual MSEs corresponding to each datapoint. Figure 7 (a) and (b) (red traces)
show the results of grid impedances estimated from the proposed scheme for two
randomly datapoints corresponding to fault locations at F1 and F2, respectively.
From the results shown in Figure 7, it can be concluded that the proposed scheme
can estimate the grid impedances throughout the set of selected frequency range. It
is worth mentioning that only the positive sequence frequency-dependent grid
impedance is shown in the figure, since the negative-sequence component presented
almost identical behavior.

Table. 5. The Overall Performance of Proposed Method in Term of Mean-Square-Error (MSE) over
Total Test Dataset.

Mean Square Error

Fault location F1 F2
Case study 1 1.3 3.2
Case study 2 8.4 8.67

Case study 3 20.2 46.8
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Time required for the proposed scheme: further, the time required for the proposed
scheme is listed in Table 6, split according to different modules.

Observing Table 6, one can see that the training of LSTM-AE and RF took most
time (180+30 min), although training was usually done once offline. While for
testing process, it was fast, only requiring a total of 30 ms (1.5 grid cycle) for the
combined time of feature extraction and grid impedance estimation.

Table. 6. Time Required for Training Different Modules of the Proposed Method, Feature
Extraction and Impedance Estimation.

Process  Task Time (second)
Training  LSTM-AE 10800 (or, 180 min)
Training  RF regressor 1800 (or, 30 min)
Testing Feature extraction for one datapoint 0.02

Testing Grid impedance estimation for one datapoint  0.01

Case Study 3: performance by using extracted features

The third case study aimed at verifying the effectiveness of using extracted features
instead of using raw measurement data for RF regression. In the tests, RF regressor
estimated the frequency-dependent grid impedances whereas it takes the raw data
(symmetrical components) instead of extracted features as input. The resulting MSE
values are shown in Table 5. Observing Table 5, one can see that without applying
feature extraction (i.e., LSTM-AE module) in the proposed scheme, the MSE of the
estimated impedances were 8.4 and 8.67 at points F1 and F2, respectively. The MSE
values were increased for 7.1 and 5.57 as compared with the 1st case study where
LSTM-AE module was used. This have demonstrated that feature extraction by
LSTM-AE is effective.

To further compare the performance, Figure 7 (a) and (b), (blue traces), shows the
estimated grid impedances at the same data points as that in Case study 1.
Observing Figure 6, the proposed scheme without employing LSTM-AE module
does not yield a relatively accurate estimation of the grid impedance. The estimation
result is very close to the average of all trained datapoints. It can be considered as
a RF drawback for estimating the regression function between time-series. As
shown in 1st case study extracting sequences of time-dependent features of time-
series helps the RF regression method to figure out the time-dependent relations
between its input/ output data.
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Figure 7. The result of estimating the frequency-dependent grid impedance at node B1 comparing
with true impedance (True Imp) obtained by sin-sweep; (Left) three-phase fault is located at F1,
impedance magnitudes (top) phase-angles (bottom), (Right) three-phase fault located at F2,
impedance magnitudes (top) phase-angles (bottom).

Case Study 4: performance by using only local data

The 4th case study aimed at examining the performance impact of the proposed
scheme by ignoring an additional measurement data sequence from remote
locations. In this study, only the local measurements at node B1 in Figure 2 are used
as an input to the LSTM-AE architecture. The 5th row of Table 5 shows the resulted
MSE values of the estimated impedances. Observing the results, the MSE was 20.2
and 46.8 when the electrical faults occur in points F1 and F2, respectively. The
results showed that ignoring a remotely measured data has led to dramatic change
in the results.

To further compare the performance, Figure 7 (green traces) shows the estimated
frequency-dependent grid impedances seen from node Bl at two random data
points, same as all previous case studies. Observing the results in Figure 6, one can
see that the proposed scheme cannot predict the frequency-dependent grid
impedance precisely if the remote measurement data was not used. During fault
occurrence the grid structure is changing adding the measurement at remote
location enables proposed method to learn the grid structure.

Case Study 5: comparison with wide-band signal injection method

In the 5th case study, the performance of the proposed scheme was compared with
the wide-band PRBS signal injection method [4] in terms of accuracy, frequency
resolution, and speed.

In the existing method, PRBS used as the excitation signal was generated by using
f(x) = x> + x + 1, where a sequence was generated under 10 kHz sampling
frequency [24]. The PRBS magnitude was set to 1% pu to avoid interfering with
the transformer’s no-load voltage tap-changer setting that was approximately 0.5-
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1.7% on the LV side [25]. The generated PRBS signal was then added to the d-axis
reference voltage (V) of the power converter controller. After that, the three-phase
voltage and the currents were measured at the node B1 for a duration of 1.0 second.
The DFT of the positive sequence components of both voltage and current were
derived to estimate the positive-sequence frequency-dependent grid impedance.
The time-domain signal was multiplied by the flat-top window [26] to obtain an
approximate periodic signal. It is worth noting that it was not feasible to use the
signal injection method for grid impedance estimation during a fault occurrence.
Therefore, we compared the PRBS injection and the proposed scheme on the
steady-state condition. Figure 8 (a) shows the resulting grid frequency estimates
using the PRBS signal. Observing the results, the PRBS signal injection method
seems to have generated good performance at frequencies below the filter’s cut-off
frequency which is 335 Hz. This case study was then repeated again by increasing
the PRBS magnitudes to 0.1 pu, and measured the voltage signals between the RL
and RC networks of the filter, like the work in [4]. Figure 8 (b) shows the obtained
result, where the corresponding MSE was 1.4.

The signal injection method was not feasible during large transients. Besides, using
a large magnitude for excitation signal might be harmful to other sensitive devices,
and the excitation signal with a small magnitude could not be used for estimating
the impedance at higher frequencies. Further, the signal injection was slower than
the proposed scheme. To estimate grid impedance at lower frequencies like 5 Hz,
one needs at least one-second measurement to perform an acceptable DFT spectrum
where the proposed method needs only 1 gride cycle measurement data and the
computation demand is 30 ms.
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Figure 8. Case Study 5: The result of estimating the frequency-dependent grid impedance
magnitude (top) and angle (bottom), at node B1, at steady state condition, by the proposed method
and PRBS injection method: (Right) voltage signals were measured at node B1 and the PRBS
magnitude is 0.01 pu, (Left) voltage signals were measured at point between filter’s RL and RC
networks, and the PRBS magnitude is 0.1 pu.
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Discussion

The results show that the LSTM-AE is generally an effective method for
extracting sequential features which consequently improves the RF regression
technique performance. Simulation results have shown that accurate estimation of
the grid impedance at the point of interest can be achieved in case of normal
variations of the grid operation (for example, due to a load change). On the other
hand, the results in Case study 3 and 4 show remote measurements are needed for
accurate estimation of the harmonic impedance, especially in the high frequency
range and close to the resonance. It is of importance to stress that adding
measurements at remote nodes enables for proper estimation of the harmonic
impedance also during large disturbances in the power grid, despite the fact that
the RF model has been trained based on steady-state data. However, the main
challenges in front of remote measurement are:

1. the latency due to data communication from remote nodes to the local
node;

2. considering the related cost it is not possible to do the measurement at all
nodes of the power grid;

3. there is no knowledge about the number and the location of best nodes for
remote measuring.

It is worth mentioning that this project ignored the time delay in measurement
data assuming that the measurement has been done under 5G internet protocols
which introduce ultra-reliable-low-latency communication (URLLC) system
which guarantees the reliability of 99.999% and latency less than 1 ms [27].
Future works will be using the proposed method for analysing real measured
power grid data from different utility grids including several grid-connected
power converters. qualitative and quantitative search for finding the best location
and best number of remote measurements nodes.
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