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Abstract

The post-contingency loadability limit (PCLL) and the secure operating limit
(SOL) are the two main approaches used when computing the security margins
of an electric power system. While the SOL is significantly more computation-
ally demanding than the PCLL, it can account for the dynamic response after a
disturbance and generally provides a better measure of the security margin. In
this study, the difference between these two methods is compared and analyzed
for a range of different contingency and load model scenarios. A methodology
to allow a fair comparison between the two security margins is developed and
tested on a modified version of the Nordic32 test system. The study shows that
the SOL can differ significantly from the PCLL, especially when the system
has a high penetration of loads with constant power characteristics or a large
share of induction motor loads with fast load restoration. The difference be-
tween the methods is also tested for different contingencies, where longer fault
clearing times are shown to significantly increase the difference between the two
margins.

Keywords: Dynamic security margins, dynamic security limits, load modeling,
security assessment, security margin estimation

1. Introduction

Electric power systems are generally operated according to the N -1 contin-
gency criterion, meaning that the system should be able to withstand the loss of
any single system component, such as a transmission line or a generating unit,
without losing stability. A system capable of handling this is said to be secure5

[1]. However, even when the system is secure for a given operation condition,
system operators are also required to know how far the system can move from
its current operating point and still remain secure. Therefore, system operators
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continuously compute security margins, which in turn represents the available
transmission capacity in the system.10

Two main approaches are used to compute the security margins of a power
system: the post-contingency loadability limit (PCLL) and the secure operating
limit (SOL) [1, 2]. The PCLL is evaluated by estimating the loadability limit of a
post-contingency operating point, where a solution path is traced by iteratively
increasing the system stress until the system’s critical point is reached. The15

characteristics of the iteratively increased system stress in the post-contingency
setting are similar to that of the slow load restoration that typically follows
in a long-term voltage stability event. An alternative measure of the security
margin is the SOL, which refers to the most stressed pre-contingency operat-
ing state in which the system can withstand a specified set of contingencies.20

The SOL, also referred to as the dynamic security margin, can account for the
dynamic response after a contingency and it generally provides a more accu-
rate measure of the security margin of the system. However, the SOL has been
comparatively less documented in the literature, likely due to the practical diffi-
culties required in its estimation. The SOL requires numerous full time-domain25

or quasi steady-state (QSS) simulations to trace the security limit for a set of
different contingencies, a task that is generally too time-consuming to meet the
near real-time monitoring requirements of system operators.

A security margin’s capability to account for the dynamic response after a
disturbance is likely to become increasingly important in the future. Electric30

power systems are experiencing a significant transformation; primarily charac-
terized by increased penetration of power electronic converter interfaced tech-
nologies [3]. This type of components may have a significant influence on system
stability, and includes the impact of dynamic load models [4], converter inter-
faced generation [5, 6], high-voltage direct current (HVDC) systems [7], as well35

as battery energy storage devices and flexible ac transmission systems [8, 9].
With the significant integration of such technologies, the dynamic response of
power systems will in general become more dependent on fast-response devices,
altering the power system dynamic behavior.

Although the SOL would provide a better measure of the security margin in40

a future with a higher share of fast-acting loads and generation, the high compu-
tational effort required in its estimation limits its possible applications. Several
studies have attempted to provide solutions to the high computational effort
required in estimating the SOL. Methods based on QSS simulations work by
replacing the short-term differential equations of generators, motors, compen-45

sators with the corresponding algebraic equilibrium equations, thus significantly
simplifying the general dynamic model of the power system [1]. Estimation
methods for the SOL that are based on QSS simulations, as found in [10], can
reduce the simulation time significantly compared to full time-domain simu-
lations, but cannot fully incorporate the impact of short-term and transient50

effects. In [11], a method that combined QSS and time-domain simulations
was proposed to include the impact of short-term effects. In [12], the authors
used real synchrophasor data from the Hydro-Québec’s transmission system to
baseline phase-angles versus actual transfer limits across system interfaces. A
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method for forecasting the SOL was then developed using ensemble decision55

trees where medoid clustering of the phase shift data was used as predictive
features. In [13, 14, 15], various machine learning approaches based on training
neural networks were proposed to allow real-time estimation of the SOL, with
a specific focus on voltage stability. In [16], a combined methodology based on
validating the estimations of neural networks with actual time-domain simula-60

tions was proposed to overcome the robustness issues that are commonly related
to machine learning methods.

Despite ongoing efforts in improving the computational efficiency of the SOL,
the circumstances when the SOL is to prefer to the PCLL have been relatively
unexplored in the literature. In [17], it was shown that if a system starts at65

a stable equilibrium and is slowly stressed towards a critical point without en-
countering oscillations or other limit-induced events (e.g. reactive power limits
for generators), static estimation methods are sufficient to locate the exact crit-
ical point experienced by the dynamic system. Thus, in such circumstances,
the security margin computed by PCLL would essentially be equal to the one70

computed using the method of the SOL. In [16], a theoretical comparison be-
tween the two security margins was performed with respect to voltage stability,
where the difference between the two measures was illustrated using a concept
called ”transient P -V curves”. The study highlighted the importance of load
restoration dynamics on the difference between the two methods but provided75

no numerical results. In [18], the SOL was numerically compared to another
type of security margin computed by static V -Q curves, in which variations in
the reactive power injection at a bus would affect the voltage at that same bus.
The study concluded that the SOL (or generally a dynamic simulation approach)
is a superior method compared to V -Q curves, but since the two methods are80

so conceptually different, the results of the two methods could not directly be
compared. In [10], the SOL computed by QSS simulations was compared to the
PCLL, where primarily the impact of post-disturbance control was studied. No
variations in the load composition were analyzed in the study.

A direct comparison between the SOL and PCLL is however not trivial, as85

one is computed using a static model of the system, while the other is gener-
ally estimated using a dynamic model. Thus, although it is well-known that
the PCLL and the SOL may produce significantly different estimations of the
security margin, the difference in the results can be caused by both in how the
simulations were conducted, as well as owing to the fact that the SOL can ac-90

count for the system’s dynamic response after a disturbance. To address the
above-mentioned lack of an accurate comparison between the methods, this
study aims to develop a methodology that allows the two security margins to
be fairly compared and to isolate the root cause of the difference between the
two security margins. Further, we also provide a comparison for a large range95

of different static and dynamic load configurations and disturbance scenarios
that are based on the developed methodology. We focus on the impact that
different load model configurations and disturbances have on the two defined
security margins. It should be noted that other aspects such as post-disturbance
controls and generation characteristics of, for instance, converter-interfaced gen-100
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eration, will also have a significant impact on the difference between the two
security margins and such studies deserves further attention in future research.
The stability criteria that the two security margin methods are analyzed with
respect to are mainly short-term and long-term voltage instability and rotor
(transient) angle stability. The impact that frequency stability may have on the105

two security margins has not been analyzed in the study.
The main contributions of this study can be summarized as:

• A methodology to allow a fair comparison between the PCLL and the SOL
is developed. The purpose of the developed methodology is to isolate the
root cause of the difference between the two security margins; that is,110

that the PCLL is computed by the loadability limit of a post-contingency

operating state, whereas the SOL is computed by the loadability limit
to the final pre-contingency operating state in which the system is still
secure. Any difference between the security margins caused by differences
in the simulations and the simulation setups is compensated for.115

• An extensive numerical comparison between the SOL and the PCLL under
a range of both static and dynamic load model configurations is performed.
Different fault scenarios are examined and discussed in the study. The pur-
pose is to examine under what circumstances that the SOL is preferable to
the PCLL. While the results are specific for the used test system, they are120

used to illustrate for which load and disturbance scenarios the difference
between the PCLL and the SOL becomes most significant.

The rest of the paper is organized as follows. In Section II, the security
margin definitions for the SOL and the PCLL are presented. In Section III,
the methodology used in computing the margins is presented along with the125

simulation platform and the adaptations used to allow a fair comparison be-
tween the security margins. Results and discussion are presented in Section IV.
Concluding remarks are presented in Section V.

2. Security margin definitions

In this section, a theoretical comparison between the PCLL and the SOL is130

presented. The conceptual difference of computing the two security margins is
first presented, which is followed by a theoretical analysis of the circumstances
and the instability mechanisms that can cause the two methods to differ.

2.1. PCLL versus SOL

The security margin estimation processes for the PCLL and the SOL are il-135

lustrated in Fig. 1. Pre-contingency and post-contingency P -V curves are used
where a receiving end voltage in a stressed area is a function of an increasing
(active) power transfer from the system to this receiving end. An initial, un-
stressed, operating condition (OC) is the starting point for the security margin
estimation. The security margin is then defined as the change in loading from140
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Figure 1: Security margin estimation for PCLL and SOL. 1’ and 2’ illustrates the computation
path for the PCLL; 1 and 2 illustrates the computation path for the SOL.

the initial OC to the N -1 critical point. It should be noted that in actual ap-
plications, the limit is often smaller due to the other stopping criteria such as
too low system voltages. However, for better illustration purposes, the former
limit is used here.

In PCLL estimation, a post-contingency operating point is found by first145

introducing a contingency on the initial OC, which is typically followed by solv-
ing the resulting power flow study. This is illustrated in Fig. 1 by moving
along arrow 1′. The security margin is then traced along the solution path by
iteratively and step-wise increasing the system stress until the critical point is
reached, moving along the arrow 2′. Parameterized continuation methods based150

on static load flow solutions, generally referred to as continuation power flow
(CPF), are commonly used to avoid convergence problems close to the critical
point of the system [19]. The distance between the pre-contingency operating
point and the N -1 critical point represents the PCLL.

In the estimation of the SOL, the dynamic security of the system is tested155

with an increasing stress level, illustrated by arrow 1 in Fig. 1 [10]. For every
new stressed pre-contingency OC, the system response following the disturbance
is studied. The final, pre-contingency OC that is tested and can provide a
stable operating point is illustrated by moving along arrow 2 in Fig. 1. The
state transition following arrow 2 can generally not be computed using static160

methods as it can result in numerical divergence. Instead, methods based on
dynamic (or QSS) simulations are generally required. The increased loadability
between the initial OC and the most stressed pre-contingency OC that can still
handle a dimensioning contingency without causing instability represents the
SOL. It should be noted, that while the PCLL and the SOL are illustrated to165

result in the same level of security margin in Fig. 1, this is generally not the
case. The difference between the two security margins is further analyzed in the
following sections and a typical case is exemplified in Fig. 2.
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2.2. System dynamics and instability mechanisms

Loads are often recognized to maintain constant power characteristics in a170

long-term system perspective but do not generally behave as such following a
disturbance. Assuming a sudden voltage change, loads will initially drop ac-
cording to their instantaneous characteristics [20]. Then, the impedance or the
drawn current is adjusted to restore the load to its original level; a process that
can be exemplified by the automatic changes in the slip of induction motors or175

by changes in tap positions to increase the voltage for loads behind load tap
changers (LTCs). The overall load restoration after a disturbance is generally
assumed to act significantly slower than the dynamics of other system compo-
nents, such as the dynamics of generators and excitation systems. The PCLL
is based on this time-scale decomposition, where short-term dynamics, such as180

the slip of induction motors, or generator and excitation dynamics, are assumed
to be in equilibrium. Using this assumption, the loadability limit of the post-
disturbance system can be found even though only static estimation methods
are used to trace the security margin.

In [20] and [16], the concept of transient P -V curves was used to allow185

visualization and analysis of short-term dynamics using P -V curves. In the
analysis, the post-disturbance P -V curve is not fixed in time but is allowed to
be affected by short-term system dynamics of, for instance, excitation systems.
Nor is the load curve fixed in time, which allows the load restoration that
follows after a disturbance to be illustrated. In Fig. 2, transient P -V curves are190

used to illustrate a system that, when assuming the short-term dynamics are in
equilibrium, could appear to be secure. However, when the short-term dynamics
are taken into account, there is a loss of post-disturbance equilibrium of the
short-term dynamics, and the disturbance would in fact cause the system to
become unstable. The load restoration curves and the transient P -V curves are195

illustrated using different shades of grey, where a lighter shade indicates closer
in time after the disturbance. The time just after a disturbance is indicated
by t1; t2 relates to a short time after the disturbance; t3 relates to the time
when all short-term dynamics are in equilibrium. The load is assumed to have
long-term constant power characteristics, but just after a disturbance, the load200

will initially change to a constant impedance characteristic. Then, by fast load
restoration, the load is quickly restored to the pre-disturbance level.

The initial OC is found in point A
′. Just after the disturbance, the short-

term dynamics of system components such as generators or excitation systems
will not yet have stabilized, which has the effect of shifting the post-disturbance205

P -V curve to the left. As a result of the initial load characteristics and the
shifted transient P -V curve, the operating point moves along the arrow to op-
erating point B′. After this transition, both the load and the post-disturbance
P -V curve are shifted towards their stable counterparts. However, due to the
fast load dynamics, there exists no intersection between the load curve and the210

post-disturbance P -V curve at t2 (the area indicated with the red dotted circle),
and without any emergency control actions, the system stability would be lost.
Thus, even though the post-disturbance P -V curve and the load characteristic
at t3 still intersect in this case, the system would have become unstable.
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Figure 2: Transient P -V curves illustrating a short-term instability event [16].

Instability caused by the short-term dynamics that follows a disturbance can215

generally be divided into three different instability mechanisms [1, 3]:

• Loss of post-disturbance equilibrium of short-term dynamics: Typically
exemplified by the stalling of induction motors after a disturbance causing
the transmission impedance to increase. Due to the increased transmission
impedance, the mechanical and electrical torque curves of the motor may220

not intersect, causing the system to lack a post-disturbance equilibrium,
similar to the case illustrated in Fig. 2.

• Lack of attraction towards the stable post-disturbance equilibrium of short-
term dynamics: Typically exemplified by transient angle instability and
the loss of synchronism by one (or several) generators following a too slow225

fault clearing.

• Oscillatory instability of the post-disturbance equilibrium: Typically ex-
emplified by rotor angle stability, in which the equilibrium between elec-
tromagnetic torque and mechanical torque of synchronous machines in
the system is disturbed. Instability may be caused by increasing angular230

swings of some generators leading to their loss of synchronism with other
generators [3].

Typically, time-domain simulations are required to capture the short-term
dynamics after a large disturbance. SOLs computed using QSS simulations can
not account for the short-term dynamics that follow after a disturbance and235

are thus better suited to only monitor long-term voltage instability phenomena.
Extensions of the QSS model have been proposed that are capable of also in-
corporating frequency dynamics that take place over the same time scale as a
long-term voltage instability event [21, 11]. Combinations of time-domain simu-
lations and QSS, as proposed in [11], can use time-domain simulations to model240

the system during the short-term period following a disturbance, followed by
QSS simulations used to simulate the long-term interval after the short-term ef-
fects are finalized. However, short-term instability may also be induced by long-
term dynamics, where the system degradation caused by long-term instability
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eventually can trigger the above-mentioned short-term events [1]. It should be245

noted that SOLs computed by combinations of time-domain simulations and
QSS, as proposed in [11], cannot capture this type of event.

3. Methodology for security margin computations

In this section, the methodology used in the comparison between the PCLL
and the SOL is presented. The load models and a description of the test system250

are presented along with the required adaptions. Finally, the methodology used
to allow a fair comparison of the PCLL and the SOL is presented.

3.1. Load models

The power consumption of loads is generally affected by the system voltages
and different load models are often used to characterize this relationship. A
traditional load model used in both static and dynamic stability analysis is the
ZIP model, which is made up of three components: constant impedance (Z),
constant current (I), and constant power (P ). The characteristics of the ZIP
model is given by [1]:

P = zP0

[

aP

(

V

V0

)2

+ bP
V

V0

+ cP

]

(1a)

Q = zQ0

[

aQ

(

V

V0

)2

+ bQ
V

V0

+ cQ

]

(1b)

where aP + bP + cP = aQ + bQ + cQ = 1, P0 and Q0 are the real and reactive
powers consumed at a reference voltage V0, given that z = 1. V is the actual255

voltage and z is a variable indicating the actual loading of the system [1]. The
constants ax, bx, and cx represent the share of constant impedance, constant
current, and constant power of the load, respectively.

Although simple and widely used in security analysis [22], the ZIP model
cannot model any dynamic behavior of the loads themselves. The significance of260

induction motor loads and other fast-acting dynamic loads are often highlighted
in system stability studies. Induction motors (IM) are characterized by fast
load restoration dynamics (often in the time frame of a second) and have a
high reactive power demand. Induction motors are also prone to stalling, which
may cause the motor to draw high reactive currents from the grid, resulting265

in a deteriorating effect on the system stability [1]. In PSS®E, a complex
load model (CLOD) can be used to represent a bundled mix of loads with
different dynamic load characteristics into a single model. The CLOD models a
composition of various load types including induction motors and several static
loads but requires only eight parameters, which is achieved by internally using270

typical manufacturer data for each load type. The CLOD model was chosen
as it provides a simple yet efficient solution to model different configurations
of common load types, including induction motors, when no detailed dynamics
data were available. In Fig. 3, a schematic of the CLOD model is presented. The
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P = PRO· VKp

Q = QRO· V2
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Figure 3: Overview of the complex load model (CLOD) [23].

transformer and feeders connecting the system bus to the load bus are modeled275

as a single impedance. At the load bus, different percentages of large and small
IMs, discharge lighting loads, transformer saturation, and constant power loads
can be modeled. The remaining part of the load is modeled as a polynomial load
where the voltage dependency of the active load is controlled through a constant
Kp. The performance curves of the two motor models, the discharge lightning280

model, and the transformer saturation model is further detailed in [23].
It should be noted, that all constant power loads in PSS®E are modeled as

constant power only for a certain range of load voltages. When voltages drop
below a threshold, by default 0.7 per unit in PSS®E, the constant power loads
instead follow a function based on the magnitude of the bus voltage, further285

detailed in [24].

3.2. Simulation test system

All simulations have been tested on the slightly modified version of the
Nordic32 test system, detailed in [25]. The main characteristic of the system
is sensitivity towards long-term voltage instability, although the system can290

exhibit other types of instabilities as well. A single-line diagram of the test
system is presented in Fig. 4. The security margins are computed by increasing
the loading in the area ”Central”, while the generation in the area ”North” is
increased by a corresponding quantity. The starting point for all scenarios is
the secure ”operating point B” as defined in [25].295

All simulations were carried out using PSS®E version 35.0. To ensure
numerical stability during the dynamical simulation runs, a short integration
step of 0.0005 seconds was used in the simulations. In certain sensitive scenarios,
such as when the simulations resulted in a non-converging dynamic simulation,
the integration step was at times varied to provide a converging simulation.300
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Figure 4: Single-line diagram of the modified Nordic32 system [25].

3.3. Methodology and adaptations

To compare the two conceptually different methods of PCLL and SOL is not
trivial; one is computed using a static model of the system, while the other is
generally estimated using a dynamic model. To ensure that the difference in the
computed security margins was not caused by differences in how the simulations305

were conducted, but rather by the fact that the SOL could better account for
the system’s dynamic response after a disturbance, a few adaptations of the
methods were required. Instead of using CPF methods to compute the PCLL,
we adopted a method that slowly ramps up the system stress in a dynamic
simulation setting; an approach similar to the one used to compute the (pre-310

contingency) loadability margins in [25]. This approach allows the PCLL to be
performed in a dynamic setting while mimicking how the system stress would
have been increased if it would have been performed in a static setting. The
advantage of adopting this methodology is that the loading and the generation
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set points could be increased in the exact same way for both the computation315

of the PCLL and the SOL.
In [25], when computing the PCLL, the authors increased the system stress

in small increments over time, but did not evaluate whether the system had
stabilized before continuing stressing the system. This could result in that
additional system stress was added to an already unstable system and that the320

PCLL became overestimated. For instance, long-term voltage instability events
typically last several minutes, and a significant amount of system stress could
thus have been added to the system while it had already become unstable. To
address this issue, we used an adaptive method to analyze whether the system
had stabilized. To achieve this, the timer settings of LTCs and over-excitation325

limiters (OELs) were monitored continuously throughout the simulation. These
two components have the longest timer settings in the test system, and if all
timers were reset for a given time (3 seconds) after a disturbance (or a load
increase), the system was assumed to have stabilized.

3.3.1. Steps for PCLL computation330

The steps used in computing the PCLL were the following:

• Initialization: The PCLL computation was initialized by applying a
chosen contingency in the system in a dynamic simulation from the base
case. The dynamic simulation ran until the system was fully stabilized.

• Increase system stress: Once the system had stabilized after the initial335

disturbance, the system stress was increased in small increments of 1 MW,
which was distributed among all the loads in the ”Central” area. To
reduce the required simulation time, the system stress was for certain
fault scenarios (scenarios A and B) initially increased in larger increments
(5 MW), since lower stress levels were found to not cause instability in340

the system. The different fault scenarios are further discussed in Section
4.1. The power factor of each load was kept constant. Simultaneously, the
load change was compensated by the primary frequency response of the
generators in the system. The added load for both the PCLL and SOL
were computed as a nominal load increase at 1.0 pu voltage to ensure345

that the same amount of load was added for both methods regardless
of the current load voltage in the dynamic simulation. Increased active
line losses caused by the increased system stress were also automatically
compensated by the generators’ primary frequency response, while the
reactive line losses were automatically compensated by the generators’350

excitation systems.

• Check stability criterion: After the increased system stress, the sim-
ulation continued to run until the system either stabilized or until the
stability criterion was violated. The system was considered unstable if
any bus voltage in the system was lower than 0.9 pu. Although the mod-355

ified Nordic32 test system is characterized by sensitivity towards voltage
instability, other types of instability can violate the stability criterion. For
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instance, transient angle instability can cause locally low voltages due to
lost synchronism of certain generators. Overloading of transmission lines
and transformers were not included in the stability criteria, as it is not360

directly affected by the dynamics of the system, but mainly just the mag-
nitude of the system stress. Thus, in those cases that overloading would
affect the results and be limiting for the security margin, it would generally
limit the PCLL and the SOL to the same degree.

• Re-iterate: The system stress was increased until the system eventually365

violates the stability criterion. The difference in loading from the base
case to the final stable operating point in the stressed post-contingency
system represents the computed PCLL.

3.3.2. Steps for SOL computation

The SOL was computed similarly to the PCLL, but by instead stressing the370

system in its pre-contingency configuration and then introducing the distur-
bance. The steps used in the computation of the SOLs were the following:

• Initialize simulation and increase system stress: When the ZIP
model was used to model the loads, the dynamic simulation was initial-
ized directly at the beginning of the simulation. The system stress was375

then increased in its pre-contingency base case in small increments of 1
MW, in the same way as was done for the PCLL computation in its post-
contingency configuration. The small step size in system stress was chosen
to allow the illustration of the security margins using P -V curves. In more
general applications, faster methods such as the binary search method de-380

scribed in [10] or the dual binary search method described in[16], can
otherwise be used to compute the SOL.
Adjustments for the CLOD model: For the scenarios using the CLOD
model, the increased system stress was required to be added in a static
load flow scenario, which was then converted for dynamical studies. The385

increased load was distributed in a similar manner as when using the ZIP
load model, except that the load was added in a static load flow sce-
nario instead of during a dynamic simulation. However, the increased
load could now not be automatically compensated by the generators’ pri-
mary frequency response, and the increased load was instead distributed390

and compensated by increasing the generation set-points of all the hydro
generators in the ”North” and ”Eq” regions, see Fig. 4. The distribu-
tion of the increased generation was based on the rated capacity of each
generator and a generator with a higher rated capacity received a larger
share of the increased generation. Increased active line losses caused by395

the increased system stress were compensated by an increase in the gen-
eration of the slack bus generator, g20. While this distribution can be
assumed to be relatively similar to how the primary frequency control of
the governors would have compensated for the increased load, it will cause
a small difference in how the system stress is increased between the two400

load models.
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• Introduce disturbance and check stability: A disturbance was then
applied in the system. A final end time of the dynamic simulation of 1000
seconds was used. The system was considered unstable if any bus voltage
in the system was lower than 0.9 pu at the end of the simulation. The405

simulation was also stopped in advance if any bus voltage decreased below
0.7 pu (still allowing the system to first stabilize for 20 seconds after the
disturbance).

• Re-iterate: If the system was stable, the system was reinitialized to the
last pre-contingency state, followed by increasing the system stress by an410

additional 1 MW and applying the same disturbance. The SOL is then
computed from the difference in loading from the base case to the final
stable operating point in the stressed post-contingency system.

4. Simulation results and discussion

In this section, the results of the numerical comparison between the PCLL415

and the SOL are presented. Three different contingency scenarios were tested.
The results of PCLL and the SOL computation are presented for each contin-
gency scenario and each load model configuration. It should be noted that the
different types of disturbances were chosen to exemplify the difference between
the two security margin methods under various conditions. In real applications,420

all relevant contingencies that might be dimensioning for the security margin
should be included when computing the security margin. Furthermore, the di-
rection of the system stress and the load-generation configuration should be
representative of the specific system in consideration.

4.1. Contingency scenarios and loading scenarios425

The following contingency scenarios were examined:

• Scenario A: A three-phased fault for 40 milliseconds, followed by tripping
the faulted line. The faulted line is the one connecting the two areas
”North” and ”Central” between bus 4032 to bus 4044.

• Scenario B: A longer three-phased fault for 100 milliseconds, followed by430

tripping the faulted line. The faulted line is the one connecting the two
areas ”North” and ”Central” between bus 4032 to bus 4044.

• Scenario C: Tripping the of generator ”g7” located at bus 1043 in the
”Central” area.

For each of the contingency scenarios, different combinations of the ZIP435

load were tested for both the PCLL and the SOL. In addition, the SOL was
computed for different compositions when the CLOD model was used to model
the loads in the system. Adjusting the load levels during a dynamic simulation,
which was required when computing the PCLL, was not feasible when using
the CLOD model, as it requires that its internal parameters are recomputed440
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whenever the load composition changes. Thus, the CLOD model was analyzed
only with respect to the SOL. Furthermore, the CLOD model was found to be
generally numerically unstable for longer fault clearing times. Thus, we only
provide a comparison of the results for Scenario A with a fault clearing time of
40 milliseconds.445

4.2. Simulation results

The PCLL and SOL results for each scenario and each load configuration
using the ZIP model are presented in Table 1. The SOL results for scenario A
and different configurations of the CLOD model are presented in Table 2. The
largest difference between the PCLL and SOL is found for cases with a high share450

of constant power characteristics of the active part of the loads. For instance,
for scenario 1A with fully constant power characteristics for the active part of
the load and fully constant impedance characteristics for the reactive part of
the load, the SOL was only 28 MW, while the PCLL was found to be 275 MW.
The difference between the two security margin methods then reduces rapidly455

with a decreasing level of constant power characteristics on the active part of
the load. Already at slightly lower levels of constant power loads, for instance,
in Scenario 4A, the difference between the SOL and the PCLL becomes close to
negligible. In Fig. 5, the post-disturbance P -V curves of the transmission side
of bus 1041 are illustrated, respectively, for Scenario 1A. The P -V curves are460

computed by sampling the voltage magnitude when the system had stabilized
after each dynamic simulation. Here, with a fully constant power characteristic
of the active part of the loads, the P -V curves are almost identical for both the
PCLL and the SOL up until the collapse point for the SOL.

14



Table 1: Computed PCLL and SOL for different loading and contingency scenarios

Constant

MVA I Z Scenario A Scenario B Scenario C

Scenario (P/Q) (P/Q) (P/Q) PCLL SOL PCLL SOL PCLL SOL

number [%] [%] [%] [MW] [MW] [MW] [MW] [MW] [MW]

1 100/0 0/0 0/100 275 28 275 4 351 71
2 95/0 5/0 0/100 340 88 340 86 353 128
3 90/0 10/0 0/100 341 146 341 144 357 196

4 80/0 20/0 0/100 364 362 364 260 365 362
5 50/0 50/0 0/100 387 386 387 387 380 378
6 95/0 5/50 0/50 280 55 280 48 283 85

7 80/0 20/50 0/50 359 240 359 233 357 356
8 50/0 50/50 0/50 382 382 382 381 375 372
9 0/0 100/0 0/100 425 424 425 425 407 405

10 0/0 50/0 50/100 465 464 465 456 439 438
11 0/0 20/0 80/100 488 488 488 489 457 458
12 0/0 0/0 100/100 504 504 504 505 471 471
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Figure 5: P -V curves computed at bus 1041 for scenario 1A.

The difference between the PCLL and the SOL is more significant for Sce-465

nario B when a longer fault clearing time was used in the simulations. For
instance, in Scenario 1B, the SOL was estimated to only 4 MW, compared to
275 MW for the PCLL. With reference to the discussion with the transient P -V
curves presented in Section 2.2, a longer fault clearing time would have the
effect of shifting the post-disturbance P -V curve for a longer time to the left,470

causing the system to lack attraction towards a stable post-disturbance equi-
librium. Yet again, the difference between the two security margins decreases
rapidly as the share of constant active power loads decreases. For instance, in
Scenario 5B with a 50% share constant active power load, and the remaining
part of the active load being of constant current characteristics, the SOL and475

the PCLL are almost identical. The post-disturbance P -V curves of scenario 5B
on the transmission side of bus 1041 are illustrated in Fig. 6. The figure shows
that although the computed P -V curves of the SOL are slightly below that of
the PCLL, the two security margins find almost the same critical point of the
system.480

For all cases, except when the load is of constant power characteristics, the
P -V curves computed using the SOL are slightly below the ones computed using
the PCLL. Although the initial response of the excitation systems used in the
Nordic32 test system is fast, there is an integrating part of the control system
which takes a longer time until the voltage magnitudes of the generators are485

restored to their pre-disturbance set-point (differing slightly due to the droop
in the automatic voltage regulation). In the PCLL case, this voltage restoration
is allowed to fully stabilize after the initial disturbance before the system stress
is added to the system. This is not the case for the SOL, in which the system
is stressed before the disturbance is applied to the system. In turn, this causes490

LTCs and OELs to act earlier for a lower level of system stress, causing the
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Figure 6: P -V curves computed at bus 1041 for scenario 5B.

magnitude of the post-disturbance voltages to be generally lower.
In Scenario C, the chosen contingency was the disconnection of the generator

”g7”, located in the ”Central” area. Once again, the largest difference between
the PCLL and SOL is found for cases with a high share of constant power495

characteristics of the active part of the loads. For load scenarios with a larger
share of either constant current or constant impedance characteristics of the
active part of the load, the difference between the two security margins becomes
negligible.

In Table 2, the computed SOLs for scenario A when using different con-500

figurations of the CLOD model are presented. The scenarios are generated
by varying the load composition, consisting of large induction motors (LIMs),
small induction motors (SIMs), discharge lightning (DL), transformer satura-
tion (TS), constant power loads (MVA), and the remaining load which is of
constant impedance characteristics (Kp = 2). Unsurprisingly, the computed505

SOL was the lowest when there was a large share of motor loads in the system.
When the loads were modeled with a too high share of motor loads, such as
scenario 13A, the computed SOL for the base case was negative. There was a
relatively large difference between the computed SOL for scenario 17A with a
35% share of LIM loads and 25% share small motor loads, and scenario 20A510

with a 25% share of large motor loads and 35% share of SIM loads. LIM loads
generally draw a higher reactive current during instances of low system voltages
than SIM loads, which may have caused the computed SOL to differ from 47
MW for scenario 17A to 120 MW for scenario 20A.

In most scenarios where the CLOD model was used and for the level of515

system stress that made the system unstable, the system crashed during the
transient state just after the disturbance. The CLOD models were found to be
particularly sensitive towards long fault clearing times, and the Nordic32 test
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Table 2: SOLs for different load configurations of the CLOD model

CLOD model parameters Scenario A

Scenario LIM SIM DL TS MVA Remaining (Kp=2) SOL

number [%] [%] [%] [%] [%] [%] [MW]

13 35 35 5 5 10 10 -
14 30 30 5 5 10 20 60
15 25 25 5 5 10 30 372

16 35 30 5 5 10 15 28
17 35 25 5 5 10 20 47
18 35 20 5 5 10 25 59

19 30 35 5 5 10 15 37
20 25 35 5 5 10 20 120
21 20 35 5 5 10 25 365

system consistently crashed when using a longer fault clearing time (such as 0.1
seconds). The difference between the two security margins is thus likely even520

greater if breakers with longer fault clearing times can be assumed to dominate
the system. However, in a few scenarios, the long-term load restoration in the
system was the main driver for instability. One of these cases, scenario 15A, is
illustrated in Fig 7, which shows the development of bus voltages over time for
different levels of system stress. For the lower system stress levels of 150 MW525

and 372 MW, the system is able to satisfy the given stability criterion, although
the 372 MW level causes the system voltages to drop significantly. However,
for a system stress level of 373 MW, the long-term load restoration and the
activation of OELs causes the system to loose stability after about 450 seconds.

530

4.3. Discussion

The results in the previous section show that although the same operating
point has been used as a starting point for all scenarios, the PCLL and the
SOL differ significantly depending on the current load configuration and the
type of fault that is considered. The largest difference between the two security535

margin methods was found when either the loads were of high constant power
characteristics or consisted of a large penetration of induction motor loads.
These results thus confirm the well-known fact that loads with fast restoration
dynamics (where a constant power characteristic can be considered a theoretic
extreme case) will deteriorate the system stability, and illustrate how significant540

this impact may be on the computed security margins.
The main conclusions of this study, that high penetration of loads with fast

restoration dynamics will result in a difference between the PCLL and the SOL,
should generalize well to other types of power systems. However, care should be
taken when generalizing the specific results of this study to real power systems545
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Figure 7: Voltage evolution for bus 1041 for Scenario 15A for different levels of system stress.

with different characteristics. For instance, although the difference between the
SOL and the PCLL in this study was found to be negligible whenever the share
of constant power characteristic of the active part of the loads was lower than
50%, this is not necessarily the case for other systems with different dynamics.
System operators would thus be required to perform a similar analysis on their550

specific systems to analyze during what specific loading scenarios the PCLL and
the SOL start to differ.

The stability assessment practice of many system operators is, to the au-
thors’ best knowledge, to compute security margin estimations computed by
PCLLs, often in combination with dynamic security assessment (DSA). While555

DSA can provide certain types of security margins based on indices such as the
transient energy functions [26], it does not provide an accurate measure of the
loadability limit to the point where the system can no longer remain secure.
We believe that if system operators continue to rely on conventional security
margins computed by the PCLL, it is important to verify the reliability of those560

security margins to avoid either overly optimistic security margins or to avoid
having to add unnecessary large reliability margins to the computed security
margins. To account for modeling inaccuracies, transmission reliability margins
are often added to ensure that modeling inaccuracies will not cause the system
to be operated unknowingly in a non-secure operating state. Thus, if more ac-565

curate methods to determine security margins are used, such as the SOL, these
reliability margins may theoretically be reduced and the system operators could
more efficiently utilize the existing transmission capacity.

Dynamic load modeling may also become increasingly important in the fu-
ture, as more loads are expected to be controlled through power electronically-570

controlled interfaces. These types of loads, such as electric vehicle chargers,
inhibit very fast dynamic responses after disturbances [27]. Despite this, dy-
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namic load models are still relatively unused in the industry. In a large survey
study from 2013 on international industry practice on power system load mod-
eling, it was shown that about 70% of system operators and utilities still only575

used static load models for power system stability studies [28]. A drawback of
advanced load models is that the load composition is often partly unknown to
system operators, and it is thus more straightforward to use the simplified static
load models. Another drawback is the increase in computational requirement
during simulations, which reduces their applicability in real-time applications.580

However, although complex load models do not necessarily need to be used in
real-time applications, sensitivity analyses can preferably be performed using
these models, so that the impact of various degrees of motor loads and other
types of loads on the stability of a system can be studied.

While this study focused on the impact of different load models, converter-585

interfaced generation and other power electronic devices in the power system
will also have a significant impact on the computed security margins. Although
a growing share of renewable generation is often challenging from a planning
perspective due to the intermittency of the energy source, the converter inter-
face may in fact mitigate some of the short-term instability phenomena. For590

instance, with proper design of the converter controls, such components can
contribute to provide fast voltage/reactive power control or active power con-
trol for fast frequency responses. We argue that the impact of such components,
also in combination with loads with fast restoration dynamics, deserves further
attention in the research.595

5. Conclusions

In this paper, the PCLL and the SOL have been compared and studied un-
der various load configurations and disturbance scenarios. A methodology was
developed to allow a fair comparison between the two methods to ensure that
the difference in the computed security margins was due to actual differences600

of the security margin approaches, and not caused by differences in the sim-
ulation setups. The numerical comparison shows that the two methods differ
significantly under various load configurations and fault scenarios. The largest
difference between the two methods was found when the loads were of high
constant power characteristics or when the loads consisted of a large share of605

induction motor loads. Furthermore, the fault clearing time is found to be es-
pecially important and a longer fault clearing time caused the SOL to become
significantly smaller than the PCLL. The results highlight the importance of
load modeling and show that if a power system can be expected to have a large
share of loads with fast restoration dynamics, the conventional method of using610

PCLL to compute the security margins can provide overly optimistic values of
the actual security margin.
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Abstract: This study develops a machine learning-based method for a fast estimation of the dynamic voltage security margin
(DVSM). The DVSM can incorporate the dynamic system response following a disturbance and it generally provides a better
measure of security than the more commonly used static voltage security margin (VSM). Using the concept of transient P - V
curves, this study first establishes and visualises the circumstances when the DVSM is to prefer the static VSM. To overcome
the computational difficulties in estimating the DVSM, this study proposes a method based on training two separate neural
networks on a data set composed of combinations of different operating conditions and contingency scenarios generated using
time-domain simulations. The trained neural networks are used to improve the search algorithm and significantly increase the
computational efficiency in estimating the DVSM. The machine learning-based approach is thus applied to support the
estimation of the DVSM, while the actual margin is validated using time-domain simulations. The proposed method was tested
on the Nordic32 test system and the number of time-domain simulations was possible to reduce with ∼70%, allowing system
operators to perform the estimations in near real-time.

1 Introduction
Voltage instability is a key factor that limits the operation and
transmission capacity of a power system [1]. An operation close to
the physical limits enables an economic and efficient utilisation of
the system, but may also make it more vulnerable to disturbances.
The voltage security margin (VSM), also referred to as the post-
contingency loadability limit, is estimated by system operators to
evaluate the loadability margin of a post-contingency configuration
of the system [2, 3]. The VSM is generally estimated by static
assessments of the system where the stability limit up to the system
critical point is traced [4, 5].

To handle the relatively computationally intensive process of
estimating the VSM for large systems, machine learning (ML) has
been proposed to transfer the majority of the computations from an
online to an offline state. The algorithms are trained to correlate
and learn the statistical patterns relating to the VSM with a certain
operating condition in the system. Various learning techniques have
been proposed, such as neural networks (NNs) [6–8], decision trees
(DTs) [9, 10], and linear and local regression [11, 12].

Electric power systems are, however, becoming increasingly
complex, with thousands of dynamic components such as nonlinear
loads, converter-based generators, and other power electronic
devices [13, 14]. The dynamic response following a contingency
cannot be captured using static assessments, and studies have
indicated that these might be insufficient when estimating the
actual security margin [3, 15]. To ensure that the system is also
dynamically secure, system operators often use an approach called
dynamic security assessment (DSA). DSA includes time-domain
analysis to test the power system's dynamic response after a set of
contingencies to ensure its ability to reach a stable post-disturbance
operating point [2]. The ML-based methods have also become
increasingly popular in DSA due to the capability of providing
system operators with tools to assess the dynamic security of the
system in real-time. Examples of DSA methods based on ML are
found in [14, 16–19], where mainly various NN or DT methods are
utilised.

A drawback of DSA is that it only provides system operators
with information about whether the current operating condition is
dynamically secure. An alternative measure of the margin to
security is the dynamic voltage security margin (DVSM). The

DVSM, also referred to as the secure operating limit, is the margin
to the most stressed pre-contingency operating point that can still
withstand a set of credible contingencies [3, 13]. The concept of
DVSM has received comparatively little interest in the literature,
likely due to the practical difficulties in estimating the margin.
DVSM estimation is computationally demanding, where multiple
time-domain simulations are required to trace the security limit for
a range of different contingencies. Despite recent progress in high-
performance computing, it is generally not feasible to perform such
estimations for large power systems in the time frame required by
system operators.

To reduce the computation time, an approach using quasi-
steady-state (QSS) simulations was proposed in [3]. In [20], the
method was further developed and a combination of QSS and time-
domain simulations was proposed to include the impact of short-
term effects. Although this approach reduces the computational
effort compared to a full time-domain simulation, it may still prove
too slow for many real-time applications. In [21–24], different ML
approaches based on NNs were proposed to allow real-time
estimation of the DVSM. These ML-based approaches are
promising in the sense that they, when properly trained, have the
capability of providing an instantaneous estimation of the DVSM.
However, the lack of robustness and the uncertainty when handling
operating conditions not included in the training of the algorithms
may deter system operators to implement them.

Although the concept of a DVSM is not new, the circumstances
under which it is preferred to the conventional VSM are still
somewhat undefined. Furthermore, existing methods to estimate
the DVSM suffer from either being too time-consuming or lacking
robustness in the case of the ML-based methods. As blackouts and
other major failures are related to extremely high costs, it may thus
be difficult to convince system operators to implement these ML-
based methods. In this paper, we address the issues mentioned
above by clearly establishing a general framework and providing a
methodology for a robust near-real-time estimation of the DVSM.
The main contributions are the following:

• The principles of the DVSM and the differences to conventional
VSM are illustrated using a concept called transient P - V curves
to allow better interpretation of the two measures. The aim is to
summarise previous findings and to establish under which
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circumstances a dynamic security margin is preferred to a static
margin.

• A methodology for fast and robust computing of the DVSM is
proposed and tested. The method is based on using NNs to
provide both a qualified estimate of the actual DVSM and to
determine the dimensioning contingency in the system with
respect to the DVSM. The estimated values are used as a
starting point for the estimation of the actual DVSM, aimed to
improve the search algorithm and significantly reduce the
computation time. The ML approach is thus proposed to support
the estimation of the DVSM, while the actual margin is always
validated using actual time-domain simulations.

The DVSM can easily be generalised to also include other stability
related phenomena, such as rotor angle stability or inter-area
oscillations. In these applications, the more general term of a
secure operating limit can preferably be adopted. However, in this
paper, we choose to specifically analyse the limit to voltage
instability and the difference to the commonly used static VSM,
and thus the more specific term of DVSM is adopted.

The remaining of the paper is organised as follows. In Section
2, the difference between static and dynamic voltage security is
illustrated and discussed using the concept of transient P - V
curves. In Section 3, a methodology for fast estimation of the
DVSM is developed and aspects for efficient computing are
proposed. In Section 4, results and discussion are presented,
followed by concluding remarks in Section 5.

2 Static versus dynamic voltage security
In this section, the difference between static and dynamic voltage
security is developed and the concept of transient P - V curves is
adopted to illustrate when the DVSM is preferred to the
conventional VSM. A small test system's dynamic response
following a disturbance is used in the analysis.

2.1 Simple system model

In the following examples, the impact of load dynamics and the
voltage control devices (e.g. excitation control for synchronous
generators and synchronous condensers) are mainly taken into
account in the analysis. The small 2-bus test system in Fig. 1 is
used in the analysis. It consists of a controlled sending end voltage
(E∠0), supplied by a voltage source through a reactance X f . A

complex load (P + jQ) is fed through a number of lines
represented by inductances with the total reactance of Xt.

A popular method in static voltage stability analysis is to use
P - V curves, where the receiving end voltage is plotted with
respect to an increasing active load transfer in the system. In the
following figures in this section, P - V curves for the case when
E = 1.05 pu, Xt = 0.4 pu, and a fully active power load are
illustrated. The reactance X f  is initially neglected, but will be
introduced in Section 2.4. An additional P - V curve is plotted in
each figure for a N − 1 case when one line has been disconnected
(increasing Xt to 0.5 pu). Assuming lossless transmission, the
curves are developed using the classic voltage equation, given
below [2]:

V =
E

2

2
− QXt ±

E
4

4
− Xt

2
P

2
− XtE

2
Q (1)

where the upper part of each P - V curve corresponds to the
solution of (1) with the plus sign, while the lower part of each
curve corresponds to the solution with the minus sign.

The voltage instability mechanism is mainly driven by loads,
and the impact of load modelling in voltage stability analysis is
imperative [2]. The power consumption of loads is affected by the
system voltages, and different load models are often used to
characterise this relationship. A traditional model is the exponential
load model, which is given below:

P = zP0

V

V0

α

(2)

Q = zQ0

V

V0

β

(3)

where P0 and Q0 are the active and reactive power consumed when
the voltage V is equal to the reference voltage V0, given that z = 1.
z is a dimensionless and independent variable indicating the actual
loading of the system [2]. The voltage dependency is modelled by
the α and β parameters, where α = β = {0, 1, 2} represents
constant power (MVA), constant current, and constant impedance
characteristics, respectively.

2.2 Estimation of VSM and DVSM

The estimation methods for the VSM and the DVSM are illustrated
in Fig. 2 using the developed P - V curves. The security margin is
defined as the change in loading from an initial operating condition
(OC) to the N − 1 critical point. It should be noted that in real
applications, the system loading is generally stopped before the
N − 1 critical point due to other stopping criteria such as too low
system voltages. However, for better illustration purposes, the
former limit is used.

In static VSM estimation, the initial post-contingency operating
point is found by first introducing a contingency on the initial OC,
which is followed by solving the resulting power flow study. This

is illustrated in Fig. 2 by moving along the arrow 1′. The stability
limit is then traced along the solution path by iteratively increasing
the system stress until the critical point is reached, moving along
the arrow 2′. What is known as continuation power flow methods
are preferably used to avoid convergence problems close to the
critical point [4, 5]. The loading between the pre-contingency
operating point and the N − 1 critical point constitutes the VSM.

The steps of estimating the DVSM are conceptually different
from the VSM, where instead, the dynamic security of the system
is being tested with an increasing stress level in the system,
illustrated by the arrow 1 in Fig. 2 [3]. For every new pre-
contingency OC (an increase in system stress), a time-domain
simulation is initiated where the system response following a
disturbance is studied. The simulation runs until the system
stabilises or becomes unstable. The final pre-contingency OC that
is tested and still provide a stable post-contingency operating point

Fig. 1  Simple 2-bus system
 

Fig. 2  VSM versus DVSM estimation
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is illustrated by moving along the curved arrow 2 in Fig. 2. The
loading between the initial OC and the last pre-contingency OC
that can still handle a dimensioning contingency without causing a
voltage collapse, represents the DVSM.

In should be noted, that while the VSM and the DVSM are
illustrated to be the same in Fig. 2, this is generally not the case.
The difference between the methods is further discussed in the
following sections.

2.3 Load response after a disturbance

Load dynamics plays an essential role in voltage instability
phenomena [2]. In static VSM estimation, loads are often
recognised to maintain a constant MVA characteristic [25]. This
assumption is often true from a long-term system perspective, but
does not necessarily mean that the loads themselves behave as
constant MVA loads. Equipment and control mechanisms such as
load tap changers (LTCs) and voltage regulators will restore load
voltages following a disturbance, resulting in recovered load levels
even for loads with constant impedance characteristics [26].
However, even though loads are considered to have long-term
MVA characteristics, they do not necessarily behave as static MVA
loads following a disturbance. Assuming a sudden voltage change,
the loads will initially change according to their instantaneous
characteristics, for instance a mix of constant impedance and
constant current load [26]. Then, they will adjust their impedance
or the drawn current to restore the load to their original level.

This load restoration event following a disturbance, tripping of
a line in the system, is illustrated in Fig. 3. The initial OC is located
at A. Instantly after a disturbance, the load is assumed to have
constant impedance characteristics, which results in a change in
operating point from A to B. Load dynamics then restores the load,
moving the operating point from B to C. The load is thus fully
restored to the same initial load level as in point A.

2.4 Transient P - V curves and fast load dynamics

In [27], it was shown that if the system starts at a stable
equilibrium and is slowly stressed towards the critical point
without encountering oscillations or other limit-induced events
(e.g. reactive power limits for generators), the static equations are
sufficient to locate the exact critical point experienced by the
dynamic system. However, the majority of voltage collapse
incidents experienced so far have resulted from large disturbances,
typically by the loss of generation or transmission capacity [3]. In
static VSM estimation, the transient state of such events can be
neglected using the assumptions (i) that loads to do not behave as
constant MVA loads just after a disturbance, and (ii) that load
dynamics acts significantly slower compared to the voltage control
dynamics of, for instance, excitation system of generators and
synchronous condensers [26]. Hence, the transient impact of
voltage control dynamics can be neglected and the assumptions
developed in [27] would still be valid.

However, load dynamics of induction motors and power
electronic loads, such as chargers for electric vehicles, are
inherently fast. For these components, the load is often restored in
a time frame within a second, similar to that of most excitation
systems [2, 28], causing the assumptions used in conventional
VSM estimation to falter. In [26], a concept called transient P - V
curves was adopted to visualise the dynamic impact of voltage
control on the static P - V curves. In this paper, we use the same
approach when the difference between then VSM and the DVSM is
illustrated. The transient P - V curves can be obtained by modelling
and taking into account the dynamic impact of having the voltage
source in Fig. 1 behind the reactance X f . The assumption used in
conventional VSM estimation, that excitation control instantly will
restore E to its pre-contingency value after a disturbance, will thus
no longer be true. Instead, E will initially be affected by events in
the system but is controlled back to its nominal value by excitation
control of the voltage source. As the main purpose here is to
provide a principal understanding of the concept, the transient P -
V curves in the following figures are hypothetical. Similarly, the
curves illustrating the fast load restoration dynamics from a

constant impedance load to a constant power load are drawn to
allow a better understanding of the concept.

In Fig. 4, the dynamic response following a disturbance is
illustrated for a secure initial OC. The transient P - V curves and
the load restoration curves are illustrated using different shades of
grey, where a lighter shade indicates closer in time to the
disturbance. The time just after a disturbance is indicated by t1,
while t3 relates to the time when all short-term dynamics have
already taken place. The load is assumed to have long-term
constant MVA characteristics, but just after a disturbance, the load
will initially change to a constant impedance characteristic. Then,
by fast load restoration, the load is quickly restored to a constant
MVA characteristic.

The initial OC is found in point A. Just after a disturbance (at
t1), the bus voltages drop caused by a larger current being
transmitted through the remaining lines. The reactive power losses
increase in the system, and a larger current is being transmitted
through the reactance X f  found in Fig. 1. The larger current causes
the voltage E to drop initially, resulting in the P - V curve being
shifted to the left (the lightly shaded P - V curve). As a result of the
initial load characteristics and the shifted P - V curve, the operating
point moves along the arrow to the operating point B. After the
shifted operating point, two separate dynamic responses are
initiated. The voltage control dynamics, here illustrating the
excitation system response for a synchronous generator, is
restoring the terminal voltage E to its nominal value. This causes
the transient P - V curve to shift back towards the P - V curve for
the static N − 1 case. Simultaneously, the fast load dynamics are
restoring the load from the initial load characteristics back to a
constant MVA characteristic. As an effect of the voltage control
dynamics and the load restoration, the operating point moves along
the arrows from B to C, then finally, from C to D. In this case, the
system was found to be stable even after the disturbance with the
new operating point D.

In Fig. 5, the same system is slightly more stressed, with a
higher level of initial transferred power. Just after the contingency,
the operating point moves along the arrow from A′ to B′, by same
the reasoning as in the previous case. However, due to the fast load
dynamics, there exists no intersection between the curves at t2, and
without any emergency control actions, the system stability would

Fig. 3  Example of slow load restoration after a contingency
 

Fig. 4  Secure initial operating condition
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be lost. The example in Fig. 5 illustrates a type of event that the
DVSM could identify and take into account, which is not possible
using a static VSM. It should be noted that the P - V curve for the
N − 1 case and the load characteristic at t3 still intersect in this
case, indicating that a static VSM would still classify the initial OC
as secure.

2.5 DVSM versus VSM

The analysis in the previous section showed that the DVSM is to
prefer over static VSM in power systems with a large share of
loads with fast restoration dynamics. Furthermore, the closer power
systems are being operated to the limits of operation, the event
illustrated in Fig. 5, the more likely it is that the system will
become unstable during the transient state after a disturbance.
However, the advantages of using DVSM are not limited solely to
the short time instance after a larger disturbance has occurred in the
system. The same type of events may occur significantly later in a
voltage instability event, triggered by larger drops in system
voltages from, for instance by activation of overexcitation limiters
(OELs), or undervoltage tripping of generators. These types of
events are generally referred to as short-term instability events
induced by long-term dynamics [2]. It should be noted that
methods based on QSS and combinations of QSS and time-domain
simulations, as was suggested in [20], cannot deal with these types
of events.

A clear advantage of using the DVSM (which also applies for
the methods based on QSS), is that in static VSM, the notion of
time is fully ignored, and by that, the impact of, for instance, timer
settings of OELs, LTCs, and switched reactive power components
[15]. Furthermore, equipment such as air conditioners, induction
motors, and undervoltage relays, may either stall or trip due to
temporary low voltages, which is an effect that can better be taken
into account in either time-domain simulations or QSS simulations.

3 Methodology for fast estimation of DVSM
In the previous section, the circumstances when the DVSM is
preferred to the conventional VSM were presented. In this section,
a methodology for a fast estimation of the DVSM is proposed to
overcome the computational difficulties when estimating the
margin. The method uses NNs to provide both an estimate of the
actual DVSM at a specific OC, and to determine the dimensioning
contingency for the system with respect to the DVSM. These
estimated values are then used as starting points in a method called
dual binary search to significantly reduce the required
computational time in computing the actual DVSM.

The first step is the offline generation of OCs and estimations of
the DVSM for a set of credible contingencies. It should be noted
that the generation of a representative training set is a critical step
in ML applications [29]. In this paper, a simplified approach is
adopted to generate a data set with sufficient complexity to test the
method. However, in actual applications, significantly more effort
should be assigned to this step to ensure an efficient and accurate
database generation. Generally, the training data would not be

randomly generated but can be taken directly from either real or
forecasted OCs in the system.

The method is tested on the Nordic32 test system with all data
and models, as presented in [30]. After a representative training set
has been generated, the training scheme of the two NNs is
presented. Each step in the methodology is described in the
following subsections.

3.1 Generation of training data

The training data for the NNs were generated using PSS®E34.2.0
with its in-built dynamic models [31]. In this paper, we have used
full time-domain simulations, but the methodology could also be
generalised for combinations of QSS and full time-domain
simulations. The steps of generating the training data are illustrated
in the flowchart in Fig. 6 and can be summarised as follows: 

3.1.1 Choose initial operating conditions: All initial OCs were
randomly generated around the secure operating point of the
simulated Nordic32 system, denoted as ‘operating point B’ in [30].
The total load in the system for each initial OC was generated by
multiplying all the active loads randomly from the same uniform
distribution (80% of the original load as a lower limit, 95% of the
original load as upper limit). Then, each individual load was varied
by again multiplying the now updated load value with a random
variable generated from a new uniform distribution (this time with
80% as the lower limit, and 120% as the upper limit). The power
factor of all loads was kept constant. The total change in loading
was then randomly distributed among all the generators in the
system. The generated initial OCs were first solved using a
conventional full Newton-Raphson load flow solution, which
served as a starting point for the dynamical simulation. In the case
the system was not found feasible, the initial OC was re-initialised.

3.1.2 Increase system stress and solve load flow: The system
stress was then increased for the secure initial OC by increasing the
power transfer between the two areas ‘North’ and ‘Central’. The
increased system stress was achieved by increasing the loads in the
‘Central’ area with a total of ΔP1 = 200 MW, while simultaneously
increasing the generation in the ‘North’ area with the same amount.
The power factors of each load were again kept at the initial values.
The distribution of the added load and generation was based on the
initial load or the rated capacity of each generator. Thus, a bus with
a larger initial load, or a generator with a higher rated capacity,
received a larger share of the increased load and generation. All
generation that could not be supplied by the regular generators
were distributed to the slack bus generator in the system, g20, see
Fig. 7. After the loads and the generation were updated, the load
flow was reiterated, which then served as a starting point for the
time-domain simulations. To avoid numerical and stability issues
when increasing the system stress of the static system, the system

Fig. 5  Unsecure initial operating condition
 

Fig. 6  Flowchart of the generation of training data for the DVSM and the
NN

 

4 IET Smart Grid
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



stress was increased in small increments where a load flow solution
was solved for each increment.

3.1.3 Run time-domain simulation and test for security: A
time-domain simulation was then initialised for the first
contingency. In the relatively small Nordic32 test system, the same
single contingency was found to be dimensioning for almost all
different initial OCs. To test the possibilities of using a NN to
classify the dimensioning contingency, two different contingencies
were handpicked as they were found to be dimensioning for
different OCs. The tested contingency type was a three-phased
fault on a transmission line during 0.1 s, followed by a tripping of
the faulted line, which was kept tripped during the remaining time
of the simulation. The lines between the buses ‘4031–4041’ and
‘4032–4044’, connecting the ‘North’ and ‘Central’ areas, were
used, see Fig. 7 for a reference.

Each dynamic simulation ran for a total of 500 s, but was in the
case of a major voltage collapse stopped in advance. The
simulation time was chosen to ensure that the system either fully
stabilised or collapsed. It should be noted that the required
simulation time is dependent on the power system in consideration,
and it is likely that different simulation times would be required in
actual implementations of the algorithm. The system was
considered secure if, at the end of each simulation, all transmission
bus voltages were above 0.90 pu.

3.1.4 Re-iterate and test other contingencies: In case the
system was found secure for the tested contingency, the system
stress was increased again with ΔP1, followed by another security
test. In case the system was not found secure, the previously added
system stress was halved, and the process was re-initialised. This
process of iteratively updating the system stress and testing for
security continued until the increase in system stress was below a
precision value of ϵ = 5 MW. The DVSM was then computed by
taking the difference in system loading between the initial OC and
the secure system with the highest level of system stress.

Once the DVSM for the first contingency was computed, the
same procedure was repeated for the second contingency. To save
computational time, the estimated DVSM for the first contingency
was used as a starting point for the estimation of the second
contingency. If the system at that level of system stress was found
secure for the second contingency, the simulation was stopped.

Otherwise, the search algorithm continued until a new smaller
value of the DVSM was found.

3.1.5 Sampling the input values and target values: An input
vector x consisting of measurements of all bus voltage magnitudes
and angles, and active and reactive power flows were sampled
from each one of the initial OCs. The choice of which input values
to include in the training was based on the results in [8], which
found that bus voltage magnitudes and angles were found to be the
best combination of inputs when estimating the VSM using a NN.
The active and reactive power flows were then added as additional
inputs as this was found to increase the accuracy in the estimations
even further.

Two target vectors yDVSM and yCont were generated by sampling
the DVSM for each case, and the contingency that was
dimensioning for the specific case, respectively. The previously
described steps were re-iterated until a sufficiently large training
set was generated. Due to the random nature in which the training
data was initialised and generated, some of the generated OCs were
found to be correlated with very low DVSM values, despite being
initialised with low system loading. To ensure that no anomalies
were included in the training set, all OCs resulting in DVSM
values below 150 MW was excluded from the training set.

3.2 Overview and design of the NNs

NNs have been successfully applied in a range of applications and
their popularity have increased significantly in the last decades.
NNs represents a class of ML algorithms which are inspired by the
neurons in the human brain and its ability to classify and learn
events from input data [32]. The strength of NNs lies in their
capability of learning and approximating non-linear functions ( f )

from a set of input values (x), and a corresponding vector of target
values (y).

3.2.1 Architecture: The architecture of the two NNs used in this
paper is presented in Fig. 8 and the specific details regarding the
architecture and the training parameters of the two NNs are
specified in Table 1. In the training phase, the two NNs takes the
same vector of input values, which are forwarded to each of the
hidden layers through a set of weights, illustrated by the lines
connecting each of the neurons. The output of each neuron in the
hidden layer is computed using a non-linear activation function on
the sum of all the inputs, which is then forwarded to the output
layers. The rectified linear activation function (RelU) was used as

Fig. 7  One-line diagram of the Nordic32 test system
 

Fig. 8  Two NNs trained to estimate the DVSM and to classify the
dimensioning contingency
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the non-linear activation function for the two NNs. For the NN
estimating the DVSM, the outputs are forwarded to a regression
layer with a linear activation function. For the NN responsible for
ranking the contingencies, the outputs are forwarded to a layer with
a softmax activation used for classification. The softmax activation
function is generally used for multi-class classification but
generally works well also for binary classification, as is the case in
this paper. The softmax activation function outputs a probability
vector, where each class is given a certain probability. The
probability vector can then be used to rank the contingencies in
order of which most likely will become dimensioning.

In the training phase, the networks use the true target vectors
yDVSM and yCont, while during the test or prediction phase, the
network estimates the DVSM and the ranked contingencies by
generating the vectors y

^

DVSM and y
^

Cont for the current OC. The
supervised training approach aims to update and learn the suitable
values for the weights connecting each layer, implicitly modelling
the non-linear relationship between the inputs and outputs.

3.2.2 Training: Different data sets were used in training,
validation, and testing of the method. The training data has the
dimension (364 × 6000), where the dimension represents the
number of inputs, and the total number of training cases,
respectively. Each network was trained for a maximum number of
epochs, where an epoch is finished when all the cases in the
training set have been used to update the network parameters. To
reduce overfitting on the data, ridge regression (also known as L2
regularisation) was used to ensure the data does not rely too
heavily on any single feature. To further reduce overfitting, a
technique called dropout was applied where a certain percentage of
the connections between each layer were masked/dropped, to
ensure that the model does not rely too heavily on certain
connections. The mean squared error (MSE) was used as a metric
for the NN estimating the DVSM, while the categorical cross-
entropy loss function was used for the NN classifying the
dimensioning contingency. An adaptable algorithm for gradient-
based optimisation, Adam, was used in training the network [33].
The learning rate (α) was the only parameter that was tuned for the
algorithm; the remaining used the default values according to [33].

It should be noted that both the training parameters and the
architecture of the two networks have been iteratively tuned to
increase the regression and classification accuracy. A deeper
architecture with more hidden layers was found to not increase the
performance for the specific test case and training set size. Other
hyperparameters and network architectures would likely have
better performance for other test systems than the Nordic32. By
increasing the training set size further and spending even more
effort in tuning the networks, an even better accuracy could be
achieved.

3.3 Fast DVSM estimation and dual binary search

In [3], a binary search method was proposed to estimate the
DVSM. In this paper, we propose an alternative approach denoted
as the dual binary search method, which should be able to increase
the computational speed of the DVSM. The trained NNs in Fig. 8
take the same set of measurements and generates: (i) an estimated
value of the DVSM, and (ii) an estimated ranked order of the
contingencies that most probably will be dimensioning for the
current OC. The estimated DVSM is used as a qualified estimate of
the real DVSM, which is validated through actual time-domain
simulations. The dual binary search method is then used to take
advantage of the estimated DVSM and the dimensioning
contingency to reduce the computational time when validating the
real DVSM for the system.

The dual binary search method is illustrated for two cases in
Fig. 9. Case 1 illustrates the estimation process for an
overestimated value of the DVSM, while Case 2 illustrates the
estimation process for an underestimated value of the DVSM.
Black dots indicate secure operating points and white dots indicate
unsecure operating points. The estimated DVSM is always the
starting point for the search of the actual DVSM of the system. The
system stress is increased to this point iteratively using the

approach explained in Section 3.1.2 to avoid convergence
problems.

Once the stressed static base case is found, a time-domain
simulation is initiated for the highest-ranked contingency by the
second NN, which is the contingency that most likely will be
dimensioning for the DVSM. The initial estimated DVSM level is
then tested for the chosen contingency. In case it is stable
(respectively unstable), the system stress is increased (respectively
decreased) with a certain value represented by ΔP2. We propose
using a value of ΔP2 equal to the MSE of the estimated values for
the DVSM, which should represent a reasonable uncertainty and
step size for the estimation. If the new operating point is found to
be secure, the system stress is again increased with ΔP2. In case it
is not found to be secure, the system stress is reduced by ΔP2/2.
The dual binary search is then continued until a secure operating
point is found and when the step size in system stress change is
smaller than a specified precision level (ϵ).

Table 1 Design and hyperparameters used in training
Parameter NN 1/NN 2

Data Number of inputs 364/364
Training cases 60006000
Validation cases 400/400
Test cases 400/400

         
Architecture Hidden layers 1/1

Final activation function Linear/Softmax
Hidden cells 128/32
Hidden layer activation RelU/RelU

         
Training Max epochs 1000/3000

Learning rate (α) 1 × 10
−6

/1 × 10
−5

Dropout 0%/50%
L2 parameter 0.01/0.01
Optimiser Adam/Adam [33]
Loss metric MSE/categorical cross-entropy

 

Fig. 9  Dual binary search for multiple contingencies
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This level of system stress is then tested for the other
contingencies, in ranked order, until all lower-ranked contingencies
have been tested and found secure. For both, the cases illustrated in
Fig. 9, this level of system stress for the second-ranked
contingency was found to result in a secure operating point. A third
and final ranked contingency is then tested, which for Case 1 in
Fig. 9 is found to be unsecure. The system stress is thus reduced
further for this case, resulting in a secure operating point, which
then constitutes the dimensioning DVSM for the system. It should
be noted that for Case 1, the contingency ranking was not perfect,
with the result that an extra time-domain simulation was required.

4 Results and discussions
In this section, the results from the regression and classification of
the test set for the two NNs are presented. The reduction in
computational effort is compared and presented between the
conventional tracing method and the proposed dual binary search
method. Furthermore, the capability of the method to handle
unplanned topology changes and to estimate the security margin
after a disturbance is tested. Finally, practical applications and
discussions related to DVSM estimation are presented.

4.1 Regression and classification accuracy

The prediction accuracy for the NN estimating the DVSM is
presented in Fig. 10, where the estimated DVSM is plotted with
respect to the real DVSM for the test set. The diagonal line
indicates where the points should lie in case the estimated DVSM
perfectly matches the real DVSM. Table 2 lists the mean and
maximum errors of the estimations in percentage, as well as the
MSE presented in MW. The results indicate that the NN is
generally capable to accurately estimate the DVSM given an initial
OC, with a mean error for the test set of 1.49%. The maximum
estimation error was found to be 10.96%, while the MSE was
estimated to 13.35 MW.

The classification accuracy of the NN used in ranking the
dimensioning contingency is presented in Table 3 in the form of a
confusion table. Each number in each row represents the instances
of the real dimensioning contingencies, while each number in each
column represents the instances of the predicted dimensioning
contingencies. The conditional probabilities of correctly classifying
the dimensioning contingency are presented in the column furthest
to the right. Similarly, the conditional probabilities of a
dimensioning contingency actually belonging to the predicted class
are presented in the bottom row of the table. The total accuracy for
the classification is presented in the rightmost corner of the table,
and an accuracy of 91.3% was provided for the test set. Thus, in
about nine instances of ten, the NN is capable of classifying which
contingency that will be dimensioning for the DVSM for a specific
OC. It should again be mentioned that it is possible that the
estimation and classification results could be enhanced further by
either increasing the training set size or by a more careful
exploration of suitable hyperparameters for the training of the
networks.

4.2 Computational efficiency

In this section, the computational efficiency is compared between
the proposed fast dual binary search method and the more
conventional tracing method that was used in generating the
training set (see Section 3.1 for reference). The proposed fast dual
binary search method, explained in Section 3.3, uses the estimated
DVSM value and the dimensioning contingency as a starting point
to validate the real DVSM. The computational efficiency is
measured as the average number of time-domain simulations
required in estimating the DVSM. The results of using the two
different methods are presented in Table 4. The average number of
time-domain simulations required in estimating the DVSM using
the conventional tracing method was found to be 15.3, while the
corresponding number using the proposed dual binary search
method was 4.7. The reduction in the average number of time-
domain simulations required was thus −69.2% when the proposed
method was applied.

It should be noted that the exact comparison in computational
efficiency between the two methods is of comparatively little
interest, as it mainly applies to the specific test case used in this
paper. For instance, it is probable that the computational savings
are significantly higher in most real applications, where a larger
range of contingencies may be dimensioning for the DVSM.
Furthermore, in real applications where the range of the DVSM
may be larger than what has been used in this paper, the
conventional search algorithm would require significantly more
time-domain simulations to find the true DVSM. Similarly, it is
also possible to further enhance both the conventional search
algorithm and the dual binary search algorithm by, for instance
choosing more suitable values of ΔP1, or by increasing the
precision value of ϵ. The most notable result is instead that the
computational effort in estimating the DVSM can be reduced from
requiring a large number of time-domain simulations, to only
requiring a few. Although a few time-domain simulations would
still take some time to compute for a real power system, it should
be possible to provide sufficiently fast estimations of the DVSM to
classify it as a ‘near real-time’ estimation.

4.3 Impact of sudden topology change

In any real application, the performance of a NN is dependent on
its generalisation capability. This refers to the capability of the NN
to generalise the learning from the actual training set to other, yet
unseen, cases. In this section, we examine the performance of the
NNs to generalise their estimations when subjected to test cases
where unplanned topology changes have taken place. This also
indirectly tests the capability of the method to estimate the security
margin after the system has already undergone a disturbance. As

Fig. 10  Prediction accuracy of estimating the DVSM
 

Table 2 Regression results of the DVSM estimation
Mean estimation
error

Maximum
estimation error

Mean squared error

1.49% 10.96% 13.35 MW
 

Table 3 Confusion table showing real and predicted
dimensioning contingencies

Predicted
L4044–L4032 L4044–L4032 Accuracy

Real L4044–L4032 104 23 81.9%
L4044–L4031 12 261 95.6%
Accuracy 89.6% 91.9% 91.3%

 

Table 4 Reduction in the computational effort using the
proposed method
Average number of time-domain simulations
Conventional tracing
method

Dual binary
search method

Relative reduction in
computations

15.3 4.7 −69.2%
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most power systems are operated securely with respect to N − 1, a
single disturbance will likely not cause instability. However,
following a disturbance, the system operator needs to ensure that
the (post-contingency) system is again returned to a secure
operation, so that if another contingency occurs (N − 1 − 1), the
system can withstand that disturbance as well. If not, restorative
control needs to be issued to ensure that the system yet again fulfils
the N − 1 contingency criterion. For simplicity of notation, we will
only refer to the case of unplanned topology change in the
remaining part of this section.

In the following analysis, we only consider topology changes in
the form of opened transmission lines. To ensure that the Nordic32
test system is still secure despite the topology changes, only
topology changes in the ‘North’ region, see Fig. 7, were
considered. Furthermore, only transmission lines between buses
served by two parallel transmission lines were used in generating
the test set with topology changes. A new test set of 400 cases was
then generated in the same manner as explained in Section 3.1,
with the difference that the topology changes were now added
randomly.

Two different cases were then tested. For Case A, the NNs were
trained on the previously developed training set and no unseen
cases with topology changes were included in the training set. For
Case B, the NNs were re-trained on a new training set where a few
(100) training cases with topology changes had been included in
the original training set. The exact same training procedure as
before was used. The regression results for the two cases are
presented in Fig. 11. Table 5 lists the mean error of the estimations
in percentage for each case, as well as the MSE presented in MW. 
The result for Case 1 indicates that a sudden topology change will
significantly affect the accuracy of the predictions. Although many
cases were accurately predicted, the number of outliers increased
significantly. The prediction accuracy was higher for Case B, even
though only a very small number of cases with the topology
changes were added to the training set. The classification accuracy
of the NN used in ranking the dimensioning contingency was also
affected significantly for the two cases, with a total classification
accuracy of 55 and 78.5% for Case A and Case B, respectively.

The results highlight the importance of obtaining a
representative training set and also taking into account the
possibilities of unplanned topology changes. This would also allow
system operators to better track the security margin after a

disturbance has occurred. The results also showed that by the
inclusion of even a very small set of training cases with various
topology changes, the prediction accuracy could be increased
significantly. Thus, in the event of an unplanned topology change
in the system, the system operator could quickly generate a small
training set on the new OC, and then retrain the NNs on the
generated data. It should be noted that the proposed robust
methodology of always validating the estimations of the NNs with
actual time-domain simulations reduces the impact of these types
of erroneous estimations. The main impact of a poor estimation of
the DVSM will be that the time to validate it will increase.

4.4 Discussions and practical applications

The proposed method is aimed to be used as an online tool for
system operators to estimate a power system's DVSM. The method
does not necessarily have to replace conventional VSM estimation,
but may instead be used as an additional source of information to
system operators to provide better and more accurate estimates of
the total transmission capacity in their systems.

Theoretically, the DVSM estimates by the NNs could be used
directly to provide real-time estimates of the security margin.
However, despite years of research, examples where these methods
have been practically applied in system operators’ monitoring and
control systems are, to the authors’ best knowledge, very few.
From a system operator's view, an inferior method that always
works is generally preferred to a superior method that, in some
instances, does not. The proposed method in this paper is thus
suggested to utilise the advantages of ML, while still ensuring that
the method always provides good estimates regardless of the
current OCs.

An important factor in any ML-based application is the size of
the training set. The required training set size is highly dependent
on the complexity of the underlying problem, here represented by
the power system in consideration. The required size of the training
data set depends on several factors, such as the range of different
possible operating conditions, the number of possible dimensioning
contingencies, and, ultimately, the accuracy requirement of the
system operator.

NNs were chosen as they have been proven to be very powerful
in applications for both regression and classification, especially
when trained on large sets of data [32]. A common criticism
against NNs is that while they can accurately approximate any non-
linear function, studying their structure will not give any insights
on the function that is being approximated. However, since the
proposed methodology use time-domain simulations to always
validate the estimations provided by the NNs, the drawback of the
lacking ability to interpret the estimations is of less significance.

The results in the previous section indicated that by using the
proposed method, the number of required time-domain simulations
to estimate the DVSM could be reduced to only a few, allowing
system operators to estimate the DVSM in a time frame that could
be defined as ‘near real-time’. The update frequency of security
margins will affect the required transmission reliability margins as
the underlying system continuously change between the
assessments. The actual estimation speed will still be affected by a
range of different factors, such as the computational speed of the
hardware being used, the size of the specific power system in
consideration, or the required precision (i.e. the value of ϵ).

In this paper, measurements of bus voltage magnitudes and
angles, as well as active and reactive power, have been assumed to
be available, either directly from measurements or from state
estimations of the system. However, to ensure that missing values
and errors are filtered out, all measurements should preferably be
preceded by a state estimator. To adapt to the evolving operating
conditions and self-rectify any bad predictions, the two NNs should

Fig. 11  Prediction accuracy of the DVSM during sudden topology
changes, Cases A and B. With and without trained on a training set with
100 training cases with topology changes included

 

Table 5 Regression results of the DVSM estimation for
Cases A and B

Mean estimation error, % Mean squared error, MW
Case A 12.97 134.38
Case B 7.33 63.59
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be trained continuously during operation. Using approaches such as
stochastic gradient descent, the NNs weight parameters can
continuously be tuned to increase the robustness and accuracy.

5 Conclusions
This paper presents a framework and a methodology for fast
estimation of the DVSM. The difference between the DVSM and
the conventional static VSM has been illustrated using a concept
called transient P - V curves, where the advantages of using the
DVSM have been established. Specifically, the DVSM will
become increasingly important in power systems with an
increasing share of loads with fast load restoration dynamics and in
systems that are operated close to the physical limits.

Furthermore, a methodology for a fast estimation of the DVSM
is proposed. The method uses a regression-based NN to provide a
qualified guess of the actual DVSM. Moreover, a second NN is
used to provide a classification of which contingency will be
dimensioning for the system. The estimates from the NNs are used
in a method called dual binary search, which is used to validate the
actual DVSM using time-domain simulations. The ML-based
approach is thus only proposed to support the estimation of the
DVSM, while the actual DVSM is always validated through actual
time-domain simulations. This two-step approach is proposed to
overcome system operators’ reluctance of using ML-based
methods, while still allowing near real-time estimations of the
DVSM.

The results presented in this paper are promising, and the
trained NNs provided good estimations of both the DVSM and
classifications for the dimensioning contingency. The accurate
estimations used in combination with the proposed dual binary
search method were found to successfully reduce the required
number of time-domain simulations, which would allow system
operators to overcome the main practical difficulties of estimating
the DVSM.

In future research, the first step would be to test the developed
method on a real power system to examine the capacity and
limitations of the method. It would be highly relevant to examine if
the proposed methodology is capable of increasing the
computational efficiency sufficiently to allow system operators to
use it in real-time monitoring and operation. Furthermore,
generating a representative training set for a large power system is
challenging. Thus, to examine the capability to generalise the
learning from the actual training set to other, yet unseen, cases are
of special interest. Finally, actual numerical comparisons between
the DVSM and the VSM in real power systems would be of high
interest, especially when considering high system penetration of
loads with fast dynamic responses.
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Abstract—This paper develops a new method for voltage in-
stability prediction using a recurrent neural network with long
short-term memory. The method is aimed to be used as a supple-
mentary warning system for system operators, capable of assess-
ing whether the current state will cause voltage instability issues
several minutes into the future. The proposed method uses a long
sequence-based network, where both real-time and historic data
are used to enhance the classification accuracy. The network is
trained and tested on the Nordic32 test system, where combinations
of different operating conditions and contingency scenarios are
generated using time-domain simulations. The method shows that
almost all N-1 contingency test cases were predicted correctly,
and N-1-1 contingency test cases were predicted with over 95 %
accuracy only seconds after a disturbance. Further, the impact
of sequence length is examined, showing that the proposed long
sequenced-based method provides significantly better classification
accuracy than both a feedforward neural network and a network
using a shorter sequence.

Index Terms—Dynamic security assessment, long short-term
memory, recurrent neural network, voltage instability prediction,
voltage stability assessment.

I. INTRODUCTION

V
OLTAGE instability is one of the main limitations for

secure operation of a modern power system [1]. A voltage

instability event can often be deceiving, where the system may

seem stable for several minutes after a disturbance, only to end

up in an unstable state within a short time [2]. When insta-

bility finally is detected, the system may already have become

severely degraded and the risks of an extended blackout may

have increased significantly.
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To ensure a secure operation, system operators often use

an approach called dynamic security assessment (DSA). DSA

includes time-domain analysis to test a power system’s dynamic

response after a set of contingencies assure its ability to reach a

stable post-disturbance operating point [3]. Time-domain anal-

ysis and assessment of the dynamic stability are complex tasks,

and even with recent progress in high performance computing,

it is generally not feasible to assess the dynamic stability in

real-time [3].

To overcome this issue, various machine learning (ML) meth-

ods have been proposed in the literature. The main advantage

of using ML is that high-cost computations can be performed

off-line. Once the ML algorithm is trained, it can almost in-

stantaneously provide estimations and warnings to operators

that otherwise would require time-consuming computations.

Examples of DSA methods based on ML are found in [3]–[8],

where mainly various decision tree (DT) or neural network (NN)

methods are utilized.

Voltage security assessment (VSA) is a branch in DSA that

specifically examines the impact of voltage instability events [9].

This paper deals with the emergency applications of VSA, where

the current system state is assessed. Here, the stability of the

system is not tested with respect to a set of contingencies; rather,

the system may already have suffered a disturbance. The aim of

these methods is to perform voltage instability prediction (VIP)

and to detect the onset of instability, rather than its consequences.

Fast prediction of voltage instability would then allow system

operators to trigger fast remedial actions to control the system

back into stable operation again.

A method for VIP based on ML was first proposed in [4],

where a DT was trained on a generated database consisting

of the intermediate, short-term equilibrium that follows a dis-

turbance. This post-contingency state, where the majority of

the electromechanical transients have died out, was referred to

as the “just after disturbance” (JAD) state. Extensions of the

method utilizing phasor measurements have later been proposed

in [10]–[12], where the performance of different attributes or

input data have been tested. A method based on support vector

machines (SVM) was proposed in [13], where generators’ pre-

dicted reactive power output was used as an indicator for voltage

collapse. A method based on training a NN to online monitor

voltage security was proposed in [14], and in [15], a NN was used

to also indicate where in the system instability would emerge.

Most previously developed methods for VIP have in common

that only instantaneous measurements are used as inputs to the
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VIP algorithms. These inputs represent the “state signal” that the

ML algorithm uses to predict the future state. Ideally, the state

signal should summarize all relevant information required to

determine the future state of the system. A state signal achieving

this is said to have Markov property [16]. However, the dynamic

response of a power system cannot be modeled as a first-order

Markov process using only the static states provided by available

measurements in the power system. Rather, the future state of

the system also depends on a range of unknown state variables

such as the rotor speed of generators, tap positions, or rotor slips

of induction motors.

An attempt to incorporate some time-related features to im-

prove the performance in VIP was presented in [17], where a

temporal decision tree (TDT) approach was proposed. The TDT

method, further discussed in [18] and [19], could incorporate

some time-related variables, such as the difference between two

measurements for specific value of elapsed time (∆t). However,

the proposed TDT method did not allow efficient modeling of

more complex time-dependent features and also required the

user to define a finite number of candidate values of ∆t, thus

limiting the capability of the algorithm.

In response to these limitations, we propose a new method

based on a recurrent neural network (RNN) with long short-

term memory (LSTM). LSTM networks excel at capturing long-

term dependencies [20], which is an inherent aspect in long-term

voltage stability [2]. The method is, to the authors’ knowledge,

the first of its kind to use sequences of both current and past data

with the aim to enhance the available state signal and implicitly

take into account unknown state variables.

The main contributions of this paper are the following:
� A methodology for VIP using an LSTM network is devel-

oped. The LSTM network can utilize previous measure-

ments, such as the trend of bus voltage magnitudes, tap

changes, or fault locations, to improve the accuracy for VIP.

The performance using the sequence-based approach is

compared with an LSTM network using a shorter sequence

and a conventional NN.
� A new training approach is developed to provide opera-

tors with an online assessment tool for potential voltage

instability. The training approach allows the network to

not only be trained on the measurements gathered from the

JAD state but during the full dynamic trajectory that the

system takes following a disturbance. As time progresses

during a voltage instability event, the network is capable of

incorporating new observations and continuously updating

the assessment.
� A methodology for including consecutive contingencies

(N -1-1) into the training data is presented. The paper also

examines the ability of the LSTM network to generalize

for VIP under N -1-1 contingencies. Such ability is espe-

cially valuable in overcoming the combinatorial increase

of complexity in training.

The rest of the paper is organized as follows. In Section II, the

theory regarding RNNs and LSTM is presented. In Section III,

the proposed method is presented along with the steps for devel-

oping the training data and the training of the LSTM network. In

Fig. 1. Detailed schematics of an LSTM block.

Section IV, the results and discussion are presented. Concluding

remarks are presented in Section V.

II. LONG SHORT-TERM MEMORY NETWORKS

Neural networks are a class of machine learning algorithms,

highly capable of accurately approximating nonlinear functions,

mapping a set of inputs to a corresponding set of target values.

RNNs represent a specific type of NNs adapted for processing se-

quential input data [21]. However, the standard implementation

of RNN has difficulties in capturing long-term dependencies of

events that are significantly separated in time. In an LSTM net-

work, such information can be propagated through time within

an internal state memory cell, making the network capable of

memorizing features of significance [22].

A typical LSTM-block is illustrated in Fig. 1. The state

memory cell, illustrated by the light grey area, is controlled

by nonlinear gating units that regulate the flow in and out of

the cell [20]. Following [22] and [20], the forward operation of

an LSTM block is summarized below. It should be noted that

each block consists of a number of hidden LSTM cells. Vector

notation is used, meaning that, for instance, the hidden state

vector ht is not the output of a single LSTM-cell at time t, but

the output of a vector of N LSTM-cells. The operation of an

LSTM block at a time t may then be summarized by:

f t = σ
(

W fx
t +Ufh

t−1 + bf
)

(1)

it = σ
(

W ix
t +U ih

t−1 + bi
)

(2)

c̃t = tanh
(

W cx
t +U ch

t−1 + bc
)

(3)

ct = f t
⊙ ct−1 + it ⊙ c̃t (4)

ot = σ
(

W ox
t +Uoh

t−1 + bo
)

(5)

ht = ot
⊙ tanh(ct), (6)

where element-wise multiplication is denoted by ⊙, σ is the lo-

gistic sigmoid function, tanh is the hyperbolic tangent function,

and with the following variables:
� xt

∈ R
M : input vector to an LSTM block

� ht,ht−1
∈ R

N : output vector at time t respectively t-1
� f t

∈ R
N : activation vector of the forget gate

� it ∈ R
N : activation vector of the input gate

� c̃t ∈ R
N : vector of the the candidate gate
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Fig. 2. An LSTM sequence with a directed connection between the blocks.

� ct ∈ R
N : cell state memory vector

� it ∈ R
N : activation vector of the output gate

where W , U , and b represent the weight matrices and bias

vectors for each gate. The superscripts M and N refer to the

number of inputs and hidden LSTM cells in each LSTM block,

respectively.

The information stored in the state memory cell is regulated

by the operation of the different gates, as illustrated in Fig. 1. By

the operation of (1), the forget gate controls what information

should be stored from the previous memory cell state, and what

can be discarded as irrelevant. The input gate and candidate gate

control and update the memory cell state with new information

by the operation of (2)–(3). In (4), the state memory cell is first

updated by an element-wise multiplication of the previous cell

state memory vector and the resulting vector of the forget gate.

Then, the state memory cell is updated with new values provided

by an element-wise multiplication of the resulting vectors from

the input gate and the candidate gate. Equations (5)–(6) show

how the hidden state is updated by the operation of the output

gate, modulated by the updated cell state memory vector.

An LSTM network may then be constructed by creating a

sequence of several LSTM blocks. A partition of an LSTM

sequence is illustrated in Fig. 2, where each block has a directed

connection to the following block in the sequence. If the block is

the first one in the sequence, the past system state is initialized

with a preset value. For a deep LSTM network, with several

stacked layers, the inputs to the deeper layers consist of the

hidden states of LSTM blocks of previous layers. The cell state

memory is only passed along the time sequence between LSTM

blocks of the same layer. Typically, for classification purposes,

an output vector y is generated by applying a nonlinear function

of the hidden state implemented by a separate feedforward NN.

Depending on the application of the network, output vectors may

be computed for a single, or for several, LSTM block’s hidden

states.

The LSTM network can then be trained using a supervised

approach, where a set of training sequences and an optimization

algorithm are used to update and learn suitable values for the

weights matrices and bias vector parameters. The training of an

LSTM network is discussed in further detail in Section III-C.

III. METHODOLOGY

The proposed method for real-time VIP is based on off-line

training of an LSTM network on a large data set consisting of

time-domain simulation responses following a set of credible

contingencies. The method is aimed to be used as a supplemen-

tary warning system that can assess the current state of the system

in real-time. The LSTM network takes real-time and historic

measurements and attempts to assess whether the current state

will cause voltage stability issues several minutes into the future.

As time progresses and if new events occur in the system, the

network updates the assessment continuously. The network is

also adapted to be able to indicate where in the system instability

emerges, following the approach developed in [15], allowing

more cost-effective countermeasures.

The first step of the method is the off-line generation of

credible operating conditions (OCs) and contingency scenar-

ios using time-domain simulations. The method is tested on a

modified version of the Nordic32 test system with all data and

models as presented in [23]. The load restoration following the

contingencies is modelled by the actions of load tap changers that

in steps restore the voltage-dependent loads. The corresponding

generation changes are controlled mainly through governors

that control the output of the hydro generators in the system.

Schemes for automatic generation control or more dynamic

load restoration models could be added in the dynamic models

in the system but for the results to be more easily replicable,

the same system as was presented in [23] was used. After a

representative training set is generated, training of the LSTM

network is performed. Each step in the methodology is described

in the following subsections.

A. Generation of Training Data

The generation of a training set is a critical step and a range

of different initial OCs and contingencies were included to

generate a representative training set. Dynamic simulations were

performed using PSS�E 34.2.0 with its built-in models [24].

The steps of generating the training data are illustrated as a

flowchart in Fig. 4 and can be summarized as follows:

1) Initial OCs: For the Nordic32 system, the initial OCs were

randomly generated around the stable operation point denoted

as “operating point B” in [23]. A large number of possible

OCs were simulated by randomly initiating the loads from a

uniform distribution around the base case load levels (80 % of

the original load as a lower limit and 120 % as an upper limit),

while the power factor of the loads was kept constant. The total

load change was distributed among the generators based on a

weighted random distribution, where a higher rated capacity

of a generator results in a higher probability to cover a larger

share of the total load change. All generation that could not be

supplied by the regular generators were distributed to the slack

bus generator g20, see Fig. 3.

In real applications, more delicate methods for efficient

database generation and more careful generation of relevant OCs

should be used [3], [25], where for instance the impact of unit

commitment and topology changes are taken into account.

2) Solve and Check for Feasibility: The generated OCs were

solved with a power flow simulator, which served as a starting

point for the dynamical simulation. If the system load flow did

not converge, the initial OC was re-initialized.

3) Start Dynamic Simulation and Introduce Contingencies:

Two separate dynamic simulations were then initiated for the

N -1 and theN -1-1 cases. The process is illustrated in Fig. 5. For

each of the two cases, the system runs without any contingencies
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Fig. 3. One-line diagram of the modified Nordic32 system with subareas.

for 65 seconds to generate a sufficient amount of N -0 data

for the network to train on. At t = 66 seconds, the same first

contingency was applied to both of the cases. After an addi-

tional uniformly distributed random time in [10− 30] seconds

after the first contingency, a secondary consecutive contingency

was applied for the N -1-1 cases. Events resulting in several

(near-)simultaneous contingencies were not taken into account

(N -k events).

The considered contingencies in the simulations were either

(i) tripping of a generator, or (ii) a three-phased fault during 0.1

seconds, followed by tripping the faulted line, which was then

kept tripped during the remaining time of the simulation. The

first contingency was chosen to be a major fault, meaning a fault

on any transmission line connecting the different main areas in

the system (excluding the “Eq.” area, see Fig. 3), or any larger

thermal generator in the “Central” area. The second contingency,

for the N -1-1 cases, included tripping of any transmission line

in the whole system, excluding lines in the “Eq.” area. No

variations of load and generation were taken into account during

the dynamic simulations as these, in the relatively short time of

the simulations, are presumed to have a small impact on the

system stability.

4) Sample Inputs and Run Until Stopping Criteria: For each

of the two cases, an input vector xt consisting of measurements

of all bus voltage magnitudes (Vmag) and angles (Vθ), active

and reactive power flows (Pflow, Qflow), were sampled every

second (∆t = 1 s) and saved in a data file. No information

regarding the type and location of applied the contingencies

Fig. 4. Flowchart for generating input data and target values.

Fig. 5. Example of classification of an N -1 and an N -1-1 case.

were sampled, as this information implicitly can be learned by

the LSTM network. For instance, the LSTM network should be

able to correlate a zero power flow in a transmission line with

that line being out of service.

Each dynamic simulation ran for a total of 560 seconds, but

was, in the case of a major voltage collapse, stopped in advance.

The simulation interval of 560 seconds was chosen to allow

time for all dynamic events to occur and for the system to either

fully stabilize or collapse. It should be noted that systems with

different dynamics may require longer or shorter simulation

times. To reduce the computational burden when generating the

training set for a real power system, more intricate methods to
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determine whether the system has stabilized can be adopted. For

instance, by monitoring the actions of components with slow

dynamics, such as load tap changers or excitation limiters of

generators, a more efficient way of determining whether the

system has been stabilized can be developed. If none of these

components has acted in a time frame of the component with

the longest activation time, the power system can be assumed to

have fully stabilized.

5) Classification: For each case, a sequence of true target

value vectors y1, . . .,y560 was generated for every time step

in the time-domain simulation. Each yt in these sequences

represents the classification of the system if the system is allowed

to run from time t up until 560 seconds without any changes to

the current system. As time progresses and new events occur, the

class of yt may change. The sequences consist of multidimen-

sional vectors where the actual class is encoded using one-hot

(binary) encoding.

The classification was performed according both to the sever-

ity and the location of the system degradation at the end of the

time-domain simulation. The system was defined as stable if all

transmission bus voltage magnitudes were above or equal to 1

pu, in an alert state if any transmission bus voltage magnitude

ranged between 0.9 < V < 1.0 pu, and in an emergency state

if any transmission bus voltage magnitude was below 0.9 pu.

Overvoltages were not taken into account.

The target values for the alert cases were also classified

according to where the lowest bus voltage magnitudes were

found at the end of each dynamic simulation.

The Nordic32 test system is predefined into four different

regions, namely: “Eq,” “North,” “Central,” and “South” [23].

The regions “North,” “South,” and “Eq.” were found to be stable

regions, and no alert events were found in these regions for any

of the simulated cases. To test the capability of the network

to also indicate where instability emerges in the system, the

“Central” area was divided into three separate regions (indicated

by C1, C2, C3 in Fig. 3). The classification for each time step of

each simulation belonged then to one of 5 different possibilities.

Either the whole system was predicted stable; it ended up in

an emergency state; or an alert state was predicted in one of the

three defined regions (C1, C2, or C3) where the lowest occurring

transmission bus voltage was found.

The classification process is illustrated in Fig. 5. The target

values are always classified as stable up until the first contin-

gency. From different combinations of OCs and contingencies,

the system may then end up being in a stable state, an alert state

in area C1, C2, or C3, or in an emergency state. For the N -1

case, the sequence of true target value vectors from the time

of the contingency to the end of the simulation are classified

depending on which of these five states the systems end up in.

For the example of the N -1 case in Fig. 5, the system ends up

in an alert state in the C1 area. For the N -1-1 case, the target

values are classified as stable up until the first contingency. The

target values are then gathered from the N -1 case, using the end

state of that simulation for classifying the state between the first

and the consecutive contingency. After the second consecutive

contingency, the system runs until it either collapses or until 560

seconds. Depending on this final state, the sequence of true target

Fig. 6. The proposed LSTM network architecture.

value vectors from the second contingency until the end of the

simulation is classified. In the example in Fig. 5, an emergency

state is reached. Note that the scales in Fig. 5 are different from

those in the simulations for easier interpretation.

It should be noted that the classification of the different states

(stable, alert, emergency) could be performed more intricately

to satisfy other criteria of stability. For instance, these could

be related to a minimum level of loadability of the system in

its post-disturbance state. The loadability limit could then be

computed by, for instance, parameterized continuation methods

such as the continuation power flow (CPF) method [26], or by

certain line indicators [27]. Other stability criteria could include

the capability of the system in its post-disturbance state to handle

yet another disturbance.

6) Reiteration: The described steps are reiterated until a

sufficiently large training set is generated.

B. Architecture of the LSTM Network

The proposed LSTM network architecture, shown in Fig. 6,

is generally referred to as a “many-to-one” architecture, where

previous measurements in the time sequence are used for the

classification in the final block. The network consists of three

stacked LSTM layers which are used to capture different levels

of features from the inputs. Each LSTM block consists of 32

individual LSTM cells. The first layer of LSTM-blocks takes a

generated sequence of input vectors as inputs; then by mathe-

matical operation as presented in Section II, the output of each

block is forwarded both to the following block in the sequence,

as well as to the upper layer of LSTM-blocks. The inputs to

the deeper layers consist only of the hidden states of LSTM

blocks of previous layers, while both the hidden state and the

cell state memory is passed along the time sequence between

LSTM blocks of the same layer.

The LSTM network is designed to take sequences of 60 time

steps of measurements as inputs. The internal architecture of

each LSTM cell and functionality of the nonlinear gating units

as presented in Section II, allows the LSTM network to fully

utilize and pass forward the information from the first to the

final time step in the sequence. The third layer of LSTM-blocks

only passes the output forward along the time sequence. The

output layer at time t is a fully connected network with softmax
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activation for classification. In training, the network uses the

true target vector yt at time t, while during the test or prediction

phase, the network estimates a prediction vector ŷt at time t. The

interpretation of the prediction problem is further explained in

Section III-D.

C. Training the LSTM Network

Different data sets were used for training, validation, and

testing of the method on a mix of N -1 and N -1-1 cases. The

training data set has the dimension (135, 000× 364× 560),
where the dimension represents the number of training cases,

the number of inputs, and the total interval in seconds for each

simulation, respectively.

Before training, a process generally referred to as sequence

preprocessing was performed to prepare batches of sequences

with suitable length. The network is designed to take a sequence

of 60 time steps of measurements as inputs and subsequences

with a length of 60 time steps (xt−59, . . .,xt)were thus extracted

from the 560 seconds long simulation intervals, for different

values of t. For each subsequence of input vectors, a corre-

sponding target value (yt) at time t was gathered. The sequence

preprocessing was performed 120 times for each training and

validation case by varying t between values of t = [60, 180].
The lower bound of t is required to always allow historic data to

be included into the sequence. The LSTM network could have

been trained on the whole simulation interval by increasing the

upper bound of t from 180 to 560. However, since the method

is proposed to be used in fast VIP applications, there is less

usefulness of predicting instability long after the contingencies

have occurred.

The generated subsequences were then used to train the LSTM

network. Due to memory limitations, a method called mini-batch

gradient descent was utilized where mini-batches of 1000 subse-

quences were used separately to train the network. The training

was performed for a maximum of 500 epochs. An epoch is

finished when all generated batches have been used to update the

network parameters. Adam [28], an adaptable algorithm suitable

for gradient-based optimization of stochastic objective functions

was used in training the network. The algorithm used default

parameters according to [28], except for the learning rate which

was tuned. The loss function on which the optimizer is applied

is the categorical cross-entropy function, which is suitable for

multi-classification problems. To avoid overfitting the data, two

regularization techniques were used during the training. First,

early stopping was implemented, and the training of the network

was stopped in case the performance on the validation set did

not improve after six epochs. Second, a technique called dropout

was applied, where a certain percentage of the connections

between inputs and the LSTM cells were randomly masked (or

“dropped”) to reduce overfitting on the data. Both conventional

dropout and recurrent dropout between consecutive blocks were

applied during the training phase.

All other parameters related to the training of the network

are presented in Table I. The LSTM network was trained and

implemented in Python, using the Keras library with TensorFlow

backend. The architecture and parameters used to train the

TABLE I
DESIGN AND HYPERPARAMETERS USED IN TRAINING

network have been iteratively tuned to increase the classification

accuracy. It should be noted that the tuning could be extended

even further to allow an even better classification accuracy.

D. Interpretation and Intuition of the VIP Problem

By the proposed training and architecture of the LSTM net-

work, a classification problem is solved where the current system

state space is separated into different regions. Every state on a

trajectory to a stable, alert (in C1, C2, or C3), or emergency state

is labeled accordingly. The LSTM network is then trained on this

data to implicitly learn these asymptotic properties of solutions

and the trajectories of the system state. Once trained, the network

can correlate the inputs, current and historic measurements, with

a certain state-space region and trajectory, allowing warnings

of voltage instability only moments after a contingency have

occurred in a system. The classification is performed under

the assumption that the current system is unchanged, meaning

that no additional contingencies or changes in generation and

load configuration will occur. However, as time progresses,

new observations are used as inputs to the LSTM network to

continuously update and incorporate such changes in the system.

This VIP problem should be interpreted as a fixed horizon

prediction problem, where the prediction horizon always is the

final state given by the trajectories of the (dynamical) system.

This interpretation assumes that the simulation horizon of the

generated time-domain simulations are sufficiently long so that

extending the simulation horizon even further, for this particular

system beyond 560 seconds, would not change the partitioning

of the state space.

IV. RESULTS AND DISCUSSION

A. Test Results

The developed VIP methodology was tested on two separate

test sets, one containing only N -1 cases, the other containing

N -1-1 cases. Each test set was composed of 10,000 cases of

dynamic simulations. The test results of the predictions are
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Fig. 7. Classification accuracy over time for the proposed LSTM network.

presented using categorical accuracy, where the indices of the

true target values are compared to the argument maxima of the

predictions. The accuracy at each time step is then calculated

over time for each of the two test sets.

The data were fed into the network in the form of a rolling

window, with subsequences generated in the same manner as

described in Section III-C. As time t progresses, new mea-

surements entered the network from the rightmost block in the

input layer and were shifted to the left in each time increment.

Since the LSTM network require a sequence of 60 time steps

of data, no predictions were made before t = 60. To facilitate

the presentation in the following figures, a new time index T is

introduced here. The relationship between the two time-indices

is T = t− 60. The LSTM network’s performance for VIP is

not only tested during the short JAD state but during a longer

period of the dynamic trajectory the system takes following the

disturbances. This is performed to test the network’s capability

to incorporate new observations and improving its assessment

as time progresses throughout a voltage instability event. The

classification accuracy is only plotted for 120 seconds after T to

better visualize the changes in accuracy after the contingencies.

The classification accuracy over time is presented in Fig. 7.

The classification accuracy for the N -1 test set dropped signif-

icantly at T = 6 seconds, which is the same instant that the

first contingency is applied. The large drop in classification

accuracy can be attributed to low bus voltages instantaneously

following the first contingency, which the LSTM network has

learned to correlate to a voltage instability event. After the first

contingency, the classification accuracy increased and remained

constant at 100 % for the rest of the simulations.

The classification accuracy for theN -1-1 test set was identical

up until the time when the consecutive contingencies were

randomly applied. During this time, illustrated by the arrows

in Fig. 7, the classification accuracy decreased slightly. Since

these contingencies do not occur at the same time instant in

each test case, the same instant drop in accuracy as for the N -1

cases was not seen. The accuracy then gradually increased and

stabilized at around 97-98%.

The results show that the LSTM network can classify and

predict future stability almost perfectly for the N-1 contingency

cases and with good accuracy for the N-1-1 cases. To examine

which cases were misclassified, the prediction accuracy for

the two test sets, evaluated at T = 50 seconds, are presented

in Table II in the form of a confusion table. Each number in

the column in the table represents instances of the predicted

classes and each number in the row represents the instances of

the actual classes. The (empirical) conditional probabilities of

correctly classifying a certain state is presented in the column

furthest to the right. Similarly, the conditional probability of a

state actually belonging to the predicted state is presented in the

bottom row of the table. The total accuracy is presented in the

lower right corner of the table. The accuracy for all N -1 cases is

100 % and no cases are falsely classified. For the N -1-1 test set,

the lowest classification accuracy occurred for the alert states.

After inspection of the falsely classified cases, it was found that

several of these were borderline cases where the transmission

bus voltage magnitude used in the classification were very close

to what was used in the other classes. The highest classification

accuracy occurred for the emergency cases with 99.8%.

It should be noted that the test and training sets were weighted

with more cases ending up in certain classes than others. It is thus

probable that the results are slightly biased with higher accuracy

for these classes, and that the classification accuracy of the other

classes may be lower as an effect.

B. Impact of Sequence Length

In this section, the performance of the sequence-based ap-

proach is tested and compared against a conventional feedfor-

ward NN, which only uses a single snapshot of measurements

as inputs. Further, to test the impact of a shorter time sequence,

the results of an LSTM network using a time sequence of 30

time steps, instead of 60, are presented.

To allow a fair comparison between the two approaches, the

feedforward NN used in this comparison was designed to be as

similar as possible to the LSTM network. Essentially, the design

of the NN in the comparison is identical to the final time step in

the LSTM network presented in Fig. 6, with the difference that

each layer consists of a hidden layer of neurons. The designed

NN has thus three hidden unit layers, each layer with 32 hidden

nodes. The same FC layer with a softmax activation function

was used. The training for the NN was performed identically

as for the LSTM network, with the exception that instead of a

sequence of input values, a single snapshot was used. The LSTM

network using a shorter time sequence was trained identically

to that of the longer LSTM network with the exception that a

shorter sequence of 30 instead of 60 time steps was used.

In Fig. 8, the classification accuracy on the N -1-1 test set is

presented for the two LSTM networks with the different time

sequence length and for the conventional NN. The classification

accuracy for the conventional NN was around 93% after all the

consecutive contingencies had been applied, while that of the

proposed LSTM network is around 97-98%. The results show

that the performance of the LSTM network using 60 time steps

in the sequence significantly exceeded that of the conventional

NN, generally providing better classification accuracy over the

whole time frame of the simulation cases.

The classification accuracy of the LSTM network using a

shorter sequence was similar to the one using a longer sequence,

with the difference of a large drop in classification accuracy
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TABLE II
CONFUSION TABLE SHOWING PREDICTION RESULTS AND ACCURACY OF THE LSTM NETWORK EVALUATED AT T = 50 SECONDS

Fig. 8. Impact of sequence length on classification accuracy.

occurring at around T = 46 seconds, see Fig. 8. The accuracy

declined for 20 seconds and was then restored to around 97%

accuracy. A similar decline in classification accuracy, though

less significant, can be noted for the LSTM network using the

longer time sequence at T = 76. Thus, a decline in classifica-

tion accuracy started exactly 60 respectively 30 seconds after

the consecutive contingencies were introduced (at T = 16) for

the two networks, corresponding to the network’s respective

sequence length. One explanation of these results is that the

LSTM networks utilize information concerning the contingency

and pre-contingency state to enhance the classification accuracy.

When the networks starts to lose the information about the pre-

contingency state, the chance of a misclassification increases.

The results strengthen the hypothesis that a long sequence

LSTM network could be used to enhance the state signal to

provide better classification accuracy. Theoretically, an even

longer sequence could be used to increase the accuracy even

further. However, this would increase the computational cost

of training, and a balance between classification accuracy and

computational cost should be sought.

C. Impact of Measurement Update Rate

The performance of the LSTM network is in this section

tested for different values of the measurement update rate.

The performance is compared between the previously assumed

available measurement update rate of ∆t = 1 s and the slower

Fig. 9. Classification accuracy over time for different values of ∆t.

update rates of∆t = 3 s and∆t = 5 s. Due to the slower update

rates, the architecture and the number of LSTM blocks along

the time sequence had to be reduced accordingly. The original

LSTM network was designed to take subsequences of 60 time

steps of measurements as inputs. Thus, for the LSTM network

adapted for ∆t = 3 s, the number of LSTM blocks along the

time sequence was reduced to a third (20 blocks along the time

sequence), while the number of blocks for the LSTM network

adapted for ∆t = 5 s was reduced to a fifth (12 blocks along

the time sequence). The LSTM networks adapted for the new

measurement update rates were then trained identically to the

original LSTM network, with the difference that now only

every third, respectively fifth, measurement in each generated

subsequence were passed on the networks.

The classification accuracy for the different values of ∆t is

presented in Fig. 9 using the same N -1-1 test set as in previous

sections. The results show that the performance when using

a measurement update rate of ∆t = 1 s exceeds those using

a slower update rate. The largest difference can be identified

during the period when the second consecutive contingencies are

applied, which indicates that a lower value of ∆t is especially

valuable for classification during the short time that follows a

disturbance. It should be noted that due to the slower update rates

of ∆t, there is no dip in the classification accuracy following the

first contingency.
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TABLE III
AVERAGE TIME TO PREDICT THE ONSET OF VOLTAGE INSTABILITY

A larger value of ∆t may also increase the time it takes to

accurately predict instability, as new measurements are being

passed less frequently to the LSTM network. In Table III, the

average time, after a contingency, to accurately predict the

future state of the system is presented for the different values

of ∆t. The average time is only presented for the time it takes

to correctly classify the system states following the second

consecutive contingency, since correct classification following

the first contingency was almost instantaneous in all test cases.

The time was computed as the averaged passed time after the

second contingency, up until the time when the LSTM network

could consistently and accurately predict the state of the system.

For cases that took longer time than 100 seconds to be correctly

classified, a detection time of 100 seconds was assumed to avoid

skewed averaged values.

The average time to correctly predict the system state was

found to be 6.6 seconds for the proposed LSTM architecture

using a measurement update rate of ∆t = 1 s. The correspond-

ing values for the LSTM networks using the slower update rates

of ∆t = 3 s and ∆t = 5 s, were 8.7 seconds and 10.7 seconds,

respectively. The longer time longer time to accurately predict

instability for the slower update rates of ∆t can be attributed

partly to a lower classification accuracy, and partly to the fact

that measurements are being updated less frequently.

D. Generalization Capability and Training Set Requirement

The generalization capability of a ML method refers to the

capability to generalize the learning from the actual training set

to other, yet unseen, cases. Such capability is especially valuable

in overcoming the combinatorial increase of complexity in the

training when N -1-1 cases are also considered [29].

In Fig. 10, the classification accuracy is presented on the

N -1-1 test set when the LSTM network have been trained on

three different training sets. The results are presented when the

network was trained on i) the full training set with all N -1 and

N -1-1 cases included, ii) a smaller training set with allN -1 cases

but where only a small batch (5,000) of N -1-1 cases have been

included, and iii) a training set where the network is only trained

on N -1. The same training approach as previously described

were used. According to Fig. 10, the classification accuracy was

significantly reduced when no N -1-1 cases are included in the

test set. When including the small batch (5,000) of N -1-1 cases,

the classification accuracy increased significantly. However, the

accuracy is still lower than when the full training set is used.

Thus, the importance of obtaining a representative training set is

still imperative if a high classification accuracy is to be achieved.

Fig. 10. Classification accuracy over time when varying the number of N -1-1
cases included in the training data.

E. Practical Applications and Requirements

The method is proposed to be used as an online tool for system

operators to monitor the current state of a power system. It

should be stressed that the method is not proposed to replace

conventional voltage instability detection methods, but rather

function as a supplementary tool to provide early warnings.

The instantaneous prediction capability of the proposed method

has to be weighed against the possibility of misclassification

of the system’s future stability. When comparing the proposed

method to other conventional indicators for voltage instability

detection (see [2]), it is important to remember that these might

be more accurate once instability detected, but generally take

significantly longer time to indicate instability, thus reducing

the time frame that system operators have to steer the system

back into stable operation.

The proposed method is mainly intended for predicting mid-

term or long-term voltage instability where system operators

will have the possibility to act on the warnings provided by

the network. Theoretically, the method could be adapted to

also handle short-term voltage instability. However, this would

require more frequent measurement updates to ensure that the

onset of short-term instability is detected in time. Because of the

difference in the dynamical trajectories of the system for the two

different types of instability events, training a separate LSTM

network would likely provide better performance. Furthermore,

the signals provided by the network would have to automatically

trigger emergency controls, since the available time for system

operators to act on the signals would be too short for manual

control actions.

For the proposed method to be effective in long-term voltage

instability, measurement updates should be available within a

few seconds. In this paper, a measurement update rate each

second have been assumed to be available. As was found in Sec-

tion IV-C, slower measurement update rates lead both to lower

classification accuracy and slower predictions. To assure that

errors and missing values are filtered out, measurements should

always be preceded by a state estimator. However, state estimates

from a non-linear state estimator based on remote terminal units
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may be too slow to be effective. Thus, time-synchronized mea-

surements from wide-area phasor measurements filtered through

a linear state estimator would be preferred.

The softmax classifier of the LSTM network outputs a prob-

ability vector, where each class is given a certain probability. It

should be noted that this probability vector does not provide a

true representation of the model confidence. However, it can

still be useful as a proxy by system operators to track the

network’s confidence in each prediction. Thus, the operator can

use the probability vector directly in an online interface to track

the network’s belief in each prediction. Alternatively, argument

maxima or other functions could be used to present the most

probable prediction of the network, or, for instance, to avoid

predictions of falsely labeled stable states.

The practical classification accuracy of the proposed method

will be affected by many aspects and will generally be lower

than on a simulated test set. One of the more important aspects

are modeling errors, including erroneous system parameters or

inaccurate modeling of parameter values for dynamic models.

Such aspects will introduce a difference between the simulated

and the actual dynamic response after a contingency. However,

it should be noted that such limitations are not limited only to

ML based approaches for VIP. All methods for DSA require that

the dynamic models used in assessing the system response are

accurately modeled.

High penetration of variable generation may also impact the

proposed ML methodology; primarily by increasing the com-

binatorial difficulty in generating a representative training set.

To reduce the dimensionality of the state space that the power

system can operate in, it is thus required that smaller variable

generation units can be merged and modelled as equivalent units.

Such simplifications are already to an extent required in the

modelling of large power systems, where underlying distribution

grids are often reduced to single load buses. However, it is

important to verify that such simplifications of the simulation

models do not affect the dynamical trajectories the system can

take under the different contingency scenarios.

V. CONCLUSION AND FUTURE WORK

This paper presents a new approach for online voltage insta-

bility prediction using an LSTM network capable of utilizing a

sequence of measurements to improve classification accuracy.

Once trained, the LSTM network can allow system operators to

continuously assess and predict whether the present system state

is stable, or will evolve into an alert or an emergency state in the

near future. The network is also adapted to be able to indicate

where instability emerges, allowing system operators to perform

more cost-effective control measures.

The LSTM network was proposed to improve the available

state signal by implicitly learning the dynamical trajectories of a

power system following a disturbance. The LSTM architecture

and the operation of the gating units ensure that the network

is capable of capturing the long-term dependencies that are

common in voltage instability events. The results presented in

the paper are highly encouraging and the proposed method is

shown to have high accuracy in predicting voltage instability

only seconds after a disturbance.

The impact of sequence length of the LSTM network was

tested and showed that a longer sequence provided a significantly

better classification capability than both a feedforward NN and a

network using a shorter sequence. The paper also examined the

generalization capability of the proposed LSTM network, where

the classification accuracy on N -1-1 cases was assessed when

the system was only trained on N -1 cases. It was found that

this reduced the classification accuracy significantly, whereas

including a smaller subset of N -1-1 cases into the training set

resulted in significantly better performance.

Future research work includes examining the impact that

emergency control have on the prediction accuracy of the

method. Although emergency control will generally be activated

too slowly to affect the system in the time frame it takes for the

LSTM-network to predict instability, it will affect the following

predictions after the control actions have been issued. If such

control aspects are included in the training scenarios, the LSTM

network could also be used to assess whether the emergency

actions indeed succeeded in restoring the system to a stable

state again, or if further actions would be required. Moreover,

further studies are required in examining how the generalization

capability of the LSTM network can be improved. Methods to

also evaluate the accuracy of the predictions, such as providing

a confidence estimate of the predictions, would also be valuable

to ensure the robustness of the method.
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Abstract—In this paper, a predictive method to detect voltage
instability using an artificial neural network is presented. The
proposed method allows transmission system operators to predict
long-term voltage instability far before the system voltage stabil-
ity has been degraded, allowing swift and cost-effective control
actions. The predictor is tested and trained on the Nordic32 test
system for a wide range of different contingencies. The predictor
proves to be accurate in providing early warnings of impending
voltage instability, allowing 96.3 % of all test cases being
correctly classified only seconds after a contingency. The method
is proposed to be used as an effective tool for supplementary
voltage instability detection for transmission system operators.

Index Terms—Voltage instability prediction, artificial neural
networks, voltage stability, synchronized phasor measurements,
emergency control

I. INTRODUCTION

Ensuring and maintaining voltage stability are challenges

that transmission system operators (TSOs) continuously face

in their daily activities. The ability for TSOs to act quickly

and with the correct control measures is imperative during an

event causing voltage instability. Due to equipment in electric

power systems, such as overexcitation limiters (OELs), load

tap changing transformers (LTCs), and other load restoration

dynamics, the time frame of a typical voltage collapse can

range from a few seconds up to even a couple of minutes [1].

In the literature, there has been a significant development of

different kinds of voltage stability indices (VSIs) suitable for

real time assessment [2]. In general, VSIs aimed for preventive

applications calculate stability margins and precontingency

security limits ensuring that the system can handle a credible

set of contingencies, thus meeting the N-1 stability criterion

[2]. VSIs aimed for corrective applications are instead used

for voltage instability detection (VID) and they are intended

to be used when a contingency has occurred or if the system

has drifted close to the instability region, allowing TSOs to as

soon as possible detect an impending voltage collapse.

Machine learning (ML) has for several years been proposed

to be used in the field of voltage stability assessment. One

of the major advantages of using ML in voltage stability

assessment is that high effort computations and training of

the algorithm can be performed off-line, allowing almost

instantaneous estimations once the algorithm is trained. In for

example [3] and [4], ML algorithms are used to allow accurate

estimation of the N-1 voltage stability margins in real-time.

Using conventional methods for estimating voltage stability

margins will require a high computational effort, resulting in

the estimations not being possible to perform in real-time.

In an other paper [5], ML techniques are used for VID,

where accurate although more time consuming VSIs can be

computed in real-time, allowing more accurate detection of

voltage instability than using other more simplified VSIs.

In case the preventive VSIs fails, or larger contingencies in

the system occurs, the TSOs have to rely on corrective VSIs.

For most corrective VSIs presented in the literature, the aim

is to, as soon as possible, detect when the system has become

unstable. However, when instability is detected, the system is

often already severely degraded and the time until a voltage

collapse may be either too short for TSOs to act, or the related

costs with controlling the system back into stable operation

may have significantly increased.

The evolution of a typical bus voltage at a transmission bus

is illustrated in Fig. 1 for different severity of contingencies.

For the case leading to a system collapse, the voltage insta-

bility is gradually developed, driven by components such as

LTCs and OELs. At some point, the mechanism of load power

restoration has caused the system to deteriorate to such a point

that the total total power consumed in the system is reduced

instead of restored [1]. Thus, Fig. 1 illustrates the problem of

VID: that when the system stability has started to degrade, it

evolves quickly and the time for TSOs to react and control

the system back into stable operation is highly limited.

The most optimal VID method should allow prediction of

voltage instability instantaneously after a contingency has oc-

curred. That would allow TSOs to, directly after a contingency,

get a notification whether the system is under too large stress

and allow quick and effective control responses to steer the

system back into stable operation. An early prediction method

based on that approach was presented in [6], where a decision

tree (DT) approach was used to predict unstable situations,

just after a disturbance. The decision tree approach has been

further developed in several papers, such as in [7]–[9].

However, despite the fact DTs are both intuitive and easily

interpreted, the accuracy is generally not the highest of all ML

algorithms. Artificial neural networks (ANNs) are not new in

VIP [10]–[12], but their advantages have been reduced by large
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requirements of training data. Due to the rapid development

of computational power, the popularity of using ANNs in

various applications has increased significantly in the last

decade [13]. Although generally requiring more training data,

they should theoretically allow more accurate modeling of

arbitrary non-linear functions, resulting in a higher accuracy

of the classification, provided that sufficient data is available.

This paper develops a new approach of voltage instability

prediction using a single hidden layer feedforward ANN.

The method, in this paper denoted as the on-line voltage

instability prediction method (O-VIP), will allow TSOs to not

only predict voltage instability, but also to pinpoint where

the weakest areas in the system are located, allowing local

and more cost-effective control measures. Further, the paper

suggests suitable parameters and input data for the architecture

and training of the ANN, and provides a procedure to generate

the training data using the dynamic simulations.

The paper is organized as follows. In Section II, the pro-

posed method is presented along with the relevant theory and

the steps of developing the training data and the training of the

ANN. In Section III, the results of the method is presented.

Section IV discusses possible applications and practical as-

pects, while concluding remarks are presented in section V.

II. METHOD FOR ON-LINE PREDICTIVE VOLTAGE

INSTABILITY DETECTION

The O-VIP is based on performing off-line training of an

ANN with the aim to, within only a few seconds after a

disturbance, be able to predict whether that disturbance is

going to cause a voltage collapse in the near future. The

method is based on the notion that it is possible to deduct, from

measuring the system states just after a disturbance, whether

the system will end up being stable, in an alert state, or cause

a system collapse. Due to the dynamics of voltage instability

(mainly caused by OELs, LTC, etc.), the system may appear

to be in a stable condition for a rather long time before a more

rapid degradation of the system stability occurs.

A. ANN overview

Feedforward ANNs, also known as multilayer perceptrons,

are the foundation of deep learning methods [13]. The strength

Input layer Hidden layer Output layer

x1

x2

x3

xn

y1

yn

w(1) 

w(2)

Fig. 2. Architecture of an ANN with a single layer of hidden neurons

of these methods, from here on denoted as ANNs, lies in

their capability of accurately learning and approximating non-

linear functions (f∗) from a set of training data without

requiring any prior information. Thus, from a set of inputs

(xn) and corresponding target values (yn) the ANN is capable

of estimating the weights (w), or the parameters, mapping the

inputs to the target values.

In Fig. 2, the structure of an ANN with a single layer of

hidden units is presented. Between each layer there is a set of

weights (w(1) & w(2)) connecting each node in the system.

A deeper architecture, i.e. more layers with hidden units, is

often used in applications with more complicated functions

and input-output mappings. Each of the nodes in the hidden

layer consists of activation functions, such as the sigmoid-

function or the rectified linear unit-function, simulating the

response of real neurons in the human brain.

The learning of the ANN is performed using an algorithm

called backpropagation, which iteratively adjusts the weights

between each node and layer based on the adjustments that

minimizes a cost function. The cost function is defined as

the error between the estimated output and the actual target

value. Once either the cost function has been minimized, or

other stopping criteria has been met (for example maximum

number of iterations reached), the ANN is fully trained.

B. Generating training data

The simulated system in this paper is the Nordic32 test

system which has been tested and used in several previous

voltage stability simulations [14]. The method is based on

generating a large set of data using dynamical simulations,

which will be the training base for the ANN. The steps of

the method is illustrated as a flowchart in Fig. 3 and can be

summarized as follows:

1) Randomly chosen power flows: To simulate a large number

of possible power flow states in the system, the system

power flows are randomly initiated. For these simula-

tions, the loads are first randomly chosen from a uniform

distribution around the original loads (90 % of original

load as lower limit, 105 % of load as upper limit). The

change in load is then distributed randomly among all the
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Fig. 3. Flowchart of the procedure of generating data and training the ANN

generators in the system. More configurations are possible,

for instance, different levels of reactive compensation and

different topologies, but this is not simulated in this paper.

All power flow calculations and the dynamical moderation

simulations in this paper are performed using PSS®E

version 34.2.0 with its in-built dynamical models [15].

2) Solve and check for feasibility: The randomly generated

system is solved with a power flow simulator, which serves

as a starting point for the dynamical simulation. If the load

flow does not converge, the initial operating condition is

re-initialized.

3) Start dynamic simulation and introduce contingency: A

dynamic simulation is then started, including all relevant

dynamic models of the system. For the simulations in this

paper, only line faults are examined. To illustrate a possible

contingency, a line fault is applied for 0.1 s, which is then

cleared by tripping the faulted line. Any of the lines in the

Nordic32 system is randomly chosen for the contingency.

4) Sample inputs xn for the ANN: Before the inputs to the

ANN is sampled, the initial oscillations caused by the fault

should be allowed to dissipate. If not, the inputs may be

inconclusive and cause a more uncertain classification of

the system state. To reduce the impact of small oscillations,

the inputs are filtered using the mean value of three

different samples registered with a few seconds interval

10 seconds after the fault is cleared.

5) Run until convergence or collapse: The dynamic simulation

is then continued, and runs either until the system con-

verges or crashes. The transmission bus voltage magnitudes

are then sampled as a base for generating the target

values/classification of the different cases.

6) Classification of data: The data is classified into different
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categories according to the severity and location of the

system degradation. The system stability is defined as

stable if all transmission bus voltage magnitudes in the

system are above 0.95, in an alert state if any transmission

bus voltage magnitude ranges between 0.9 - 0.95 pu, and

in an emergency state if any transmission bus voltage

magnitude is below 0.9 pu:

Stable : |Vmag| ≥ 0.95pu

Alert : 0.9 ≤ |Vmag| ≤ 0.95pu

Emergency : |Vmag| ≤ 0.9pu

The cases are also classified according to where in the

system the lowest bus voltage magnitude is found at the

end of the performed dynamic simulation. The Nordic32

system has therefore been divided into different regions,

as illustrated in Fig. 4. The regions "North" and "Eq."

are more stable regions and no alert events nor emergency

events were found in these regions for any of the simulated

cases. Thus, for the classification, only the other four

regions (C1, C2, C3, S1) were used. The classification for

each of the simulations belongs consequently to one of

9 different classes: either the whole system is stable or,

an alert or an emergency state is identified in one of the

four regions where the lowest occurring transmission bus

voltage is identified. The classification is further illustrated

in the result section in Table I.

7) Re-iterate until sufficient data set is generated: The steps



should be reiterated and the inputs and target values should

be saved until a sufficient data set is generated. The

required amount of data is highly dependent on the range

of possible states in the system and the number of different

contingencies being taken under consideration. A more

thorough discussion regarding the need of a large data set

is given in section IV.

C. Training and architecture of the ANN

Once a sufficient amount of training data is generated, the

ANN is trained. For the results in this paper, an ANN with

a single layer of hidden neurons is used, developed in the

MATLAB Neural Network Toolbox [16]. The optimization is

performed using the scaled conjugate gradient backpropaga-

tion. The training was terminated when either a maximum

of 1000 epochs was reached, the training mean-squared error

falls below 1e-6, or until 10 validation checks are performed.

A validation check is given when the validation performance

fails to decrease, which is a method to avoid overfitting.

To find the best combinations of inputs to the ANN, 5

different input features sets are tested. These cases include:

Case 1: Voltage mag.

Case 2: Voltage mag. & generated power (P & Q)

Case 3: Voltage mag. & phase angle

Case 4: Voltage mag., P & Q branch flow

Case 5: Voltage mag., P & Q branch flow & phase angle

A total of 100 000 dynamical simulation samples are

generated for each feature set. The data is divided into an

80-10-10 % training, validation, and test set, respectively. The

most appropriate number of hidden neurons with respect to

accuracy, over-fitting, and computation time was found to

be 16 hidden neurons. This number is based on the results

presented in section III. Due to random sampling and different

initializations of the weights in the ANN, the performance

varies slightly when training the ANN multiple times. To find

the lowest test error, the ANN was trained for a total of ten

times, and only the best performance is presented in the paper.

III. SIMULATION RESULTS

A. Performance of the O-VIP

The lowest test error achieved in the simulations was 3.7

% using 16 neurons in the hidden layer and inputs according

to case 4. In Table I, the classification test results are repre-

sented by a confusion matrix for case 4. Each column in the

table represents instances of the predicted classes, and each

row represents the instances of the actual classes. The total

accuracy is presented in the lower right corner of the table.

According to the table, the accuracy of the O-VIP in the

case of stable states is 96.2 %, and 3.8 % of all stable cases

were thus misclassified to belong in the alert state. None of

the actual stable states were classified as emergency states. All

of the misclassification for the emergency states were either

for other regions, or ended up being classified as an alert state

but in the correct region. A 100 % accuracy was achieved for

the classification of emergency state in S1, although only a

single sample were generated for this class. This region of

the Nordic32 test system was thus significantly less prone

to voltage instability compared to other regions. The lowest

accuracy were for the alert state in S1, 85.2 %, where several

samples were misclassified as being in a stable state.

It is likely that for a majority of all cases being misclassified

as stable, although actually being in an alert state, the O-VIP

would be able to classify these correctly if the measurement

values were sampled a longer time after the contingency

occurred, allowing the system to degrade slightly more. Hence,

there exists a balance between a fast classification and ac-

curacy. Specific threshold values could be applied such that

only a certain amount of falsely positive classified cases are

accepted, or that only classifications with a certain probability

are accepted.

B. Choice of input features

Five different set of input feature combinations were tested

to find the best suitable. The performance for each of the

five cases are presented in Table II. The best performance

is achieved for case 4, where the input data consists of bus

voltage magnitudes and active and reactive branch flows. Thus,

in contrast to what is presented in [4], the voltage magnitude

and the phase angles do not present the best input to the

ANN for this application. One explanation for this outcome

could be the fact that during faults, the angle difference for

certain buses may vary significantly depending on the actual

contingency, providing somewhat inconclusive information to

the ANN. Thus, if branch power flows are used instead of

phase angles, the ANN is provided with more conclusive data

and allows a better classification. Another advantage of using

branch flow as inputs is that these provide information if a

branch is out of service, as the flow always reduces to zero.

In case phase angles are used, the ANN will have no indirect

information that a certain branch is no longer in service.

For case 5, the error is somewhat larger than for case 4. It is

an interesting result, since more input values should at least not

increase the error. The probable main explanation is the impact

of random sampling of the test set, different initializations of

the weights, and that the network might slightly overfit on the

training data.

C. Choice of neurons and training set size

The so-called hyperparameters of an ANN, such as the

number of neurons in the hidden layer, or the depth of the net-

work, control the learning of the algorithm and must be chosen

before the actual learning process has begun. The design and

choice of such parameters is often an iterative process, and

will often have to be tuned and changed repeatedly in order

to achieve a desirable performance. In the scope of this paper,

the sensitivity of all available hyperparameters is not feasible

to present, and the focus has instead been to examine a suitable

number of neurons in the hidden layer and how the training

set size affects the performance of the predictor.



TABLE I
PREDICTION RESULTS AND ACCURACY OF THE O-VIP ALGORITHM (CONFUSION TABLE)

Predicted states

Stable state Alert state Emergency state Accuracy

Classification All areas C1 C2 C3 S1 C1 C2 C3 S1

A
ct

u
a

l
st

a
te

s

Stable state All areas 4527 62 0 1 117 0 0 0 0 96.2%

Alert state

C1 77 2359 1 0 6 1 13 0 0 96.0%
C2 0 0 0 0 0 0 0 0 0 -
C3 2 2 0 1268 0 0 0 4 0 99.4%
S1 63 7 0 0 402 0 0 0 0 85.2%

Emergency state

C1 0 0 0 0 0 1 0 0 0 100%
C2 0 7 0 0 0 3 262 0 0 96.3%
C3 0 0 0 3 0 0 0 83 0 96.5%
S1 0 0 0 0 0 0 0 0 725 100%

Accuracy 97.0% 96.8% 0% 99.7% 76.6% 20% 95.3% 95.4% 100% 96.3%

TABLE II
PERFORMANCE OF ANN WITH DIFFERENT INPUT FEATURE SETS

Feature case Case 1 Case 2 Case 3 Case 4 Case 5

Test error [%] 5.0 4.4 4.7 3.7 4.0

1) Choosing number of neurons in hidden layer:

To find the most suitable number of neurons in the hidden

layer, an iterative algorithm was adopted that trained the

system with an increasing number of neurons. In Fig. 5, the

training, validation, and test error for a range of different

numbers of neurons in the hidden layer are presented for

case 4. According to the figure, the test error decreases

significantly with an increasing amount of neurons up until 16

neurons, where the lowest test error is found. By increasing the

number of neurons even further, the test training error keeps

decreasing, while both the validation and the test error are in-

creasing, indicating an increased overfitting of the parameters.

The suitable number of neurons are highly depending on the

application and a different number of neurons for other sizes

and configurations of grids is possibly more accurate.

2) Impact of training data size: The impact of a suffi-

ciently large training set is illustrated in Fig. 6, where the

training, validation, and test error is plotted for case 4, this

time with an increasing amount of training data on the x-

axis. Generally, an ANN increases its performance with an

increasing amount of training data, up to a certain point when

the performance converge. As can be seen in the figure, the test

performance increases significantly with an increasing amount

of data. However, as the training data approaches a larger

value, the test error stabilizes at around 4 %.

The training error should converge to a value close zero with

an increasing amount of data, given that the provided input

values contains sufficient information to differentiate between

the post-contingency states. Since this is not fully the case,

it is likely that the provided input data is not sufficient to

allow accurate classification in the more difficult cases. If other

information, such as dynamic values and states of OELs and

LTCs, could have been provided to the ANN, the harder cases

could possibly be correctly classified as well.
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Fig. 5. Training, validation, and test error with varying number of neurons
in hidden layer

The requirement of a large data set is also affected by the

range of different pre-contingency load flows of the system

and the set of credible contingencies taken into account. A

system with minor variations in its configurations and its load

flows would thus require a smaller set of training data than a

system with large variations.

IV. APPLICATIONS AND LIMITATIONS

A. Applications and usefulness

The O-VIP could present a powerful tool for TSOs and it

is proposed to mainly be used as a supplementary system and

to act as a complement to other voltage instability warning

systems. For the predictor to be effective, measurement up-

dates should be available in the range of a few seconds (1-10

s), as otherwise too long time between the assessments would

occur. Measurements from SCADA systems filtered through

a conventional state estimator could thus be too slow to be

effective, and preferably, the O-VIP would instead be based on

measurements from wide-area phasor measurements, filtered

through a (linear) state estimator.

The application can serve as a direct warning system

to TSOs, allowing them time to perform suitable control

measures to control the system back into stable operation.

Alternatively, the application itself could be used to initiate
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system protection schemes to automatically restore stability to

the system. Such automatic schemes would in most cases only

be used after significant testing and most likely only for the

detection and aversion of emergency states.

Another advantage of using an ANN is that it is highly

suitable for on-line applications. Using training methods such

as stochastic gradient descent, the ANN can gradually increase

its performance as more training data is being generated.

Connecting an on-line training scheme of the O-VIP with,

for example, the SCADA system could allow the method to

gradually increase its accuracy while ensuring that no changes

in the system are neglected.

B. Measurement and model errors

The performance of any VSI will be affected by both

measurement errors and by errors in the model that the VSI is

based on. The trueness and precision of measurements in the

power system is dependent on both the quality of measurement

devices and the level of measurement redundancy in the

system. A high level of measurement redundancy increases the

accuracy of state estimation algorithms and reduces the impact

of such errors significantly, which in turn would increase

the accuracy of VID systems. However, it is most likely

that the model errors that will affect the accuracy of the

O-VIP the most. Not only has regular system parameters,

such as line reactance and line resistance to be modeled

accurately, but also each dynamic model in the system has to

be modeled with sufficient accuracy. This includes modeling

of parameters for OELs, time-steps for LTCs, time-delays in

different relay equipment, and various load restoring systems.

One of the greatest challenges is to verify that the O-VIP is in

fact accurate. Voltage collapses, although a phenomenon that

TSOs always have to plan and take into account, occurs very

seldom. Hence, it would prove difficult to, in practice, test

the system. Since such tests of the O-VIP would be difficult,

the requirement of careful assessment of all different dynamic

models in the system becomes increasingly important.

V. CONCLUSION

This paper presents a new approach for on-line prediction

of voltage instability based on training an ANN. The results

presented in this paper is highly encouraging, showing high

accuracy (96.3 %) of predicting whether a voltage collapse

will develop, only seconds after a contingency in the system.

The main benefits of the O-VIP are both the early prediction

of voltage instability and the possibilities to pinpoint where

in the system the instability is the most severe. This would

allow earlier and more cost-effective control actions to steer

the system back into stable operation again. The system can be

applied and trained using on-line measurement data from the

SCADA system, but for real-time detection of voltage instabil-

ity, measurement from wide-area phasor measurements would

be preferred. More studies should be performed regarding the

impact of measurement and model errors and how that would

affect the accuracy of the O-VIP.
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Abstract—This paper examines how various integration aspects
of full converter wind turbines, such as grid code design, control
aspects, and placement of turbines, impact the long-term voltage
stability of a power system. The simulations are conducted on a
modified version of the Nordic32 test system. Different cases have
been analyzed and show, for example, that if over-dimensioning
of converters is implemented, it is mainly the converters’ current
capacity that should be increased since the voltage limitation of
converters seldom is reached during voltage instability events.
Furthermore, a restrictive reactive control scheme is tested, with
the aim of minimizing the wear and maintenance of converter
components. Although found to generally reduce the voltage
stability, the proposed control scheme could be adopted during
specific conditions where the local need of voltage support is
low. The placement of larger wind farms was found to have
the largest impact, both on long-term voltage stability of the
system itself, and on the effect that the analyzed design and
control aspects had on the system stability. Consequently, the
placement of WFs is found be an important factor to consider
when designing ancillary services and grid codes for wind power.

Index Terms—Long-term voltage stability, full converter wind
power, integration aspects, grid codes, power control schemes

I. INTRODUCTION

During the last decades, the global wind power market has

been the fastest growing energy generation sector in the world

[1]. The impact of wind power on long-term voltage stability

(LTVS) is becoming an increasingly important topic [2], and

in response to these challenges, a range of actions have been

proposed in the research and by the industry. The technical

requirements, or grid codes, for connecting wind farms (WFs)

have been updated and strengthened in several countries in the

world [3], [4]. Stricter requirements have led to an increasing

adoption of full converter based WFs (FC-WFs) in power

systems, mainly due to their flexibility in controlling the output

and response of the turbine [5].

The maximum capacity of wind power in a power system

is affected by numerous aspects, such as the placement of tur-

bines, control schemes, reactive power support capability, and

the availability of reserve power generation. Aspects of wind

power generation, ranging from grid integration issues [2],

[6], [7], control aspects [8], [9], or possibilities of providing

ancillary services [5], [10], have been examined in previous

papers. A focus in these previous papers has also been to

examine how WFs can be designed to better contribute to the

LTVS. However, designing a system that better contributes to

the system stability often comes with a cost, be it increased

cost for sizing of converters, or increased wear of converters

due to increased reactive power support.

The main objective of this paper is to bring new insights in

how different integration aspects of FC-WFs affect the LTVS

of a power system. Examined design aspects include grid code

design, power control aspects, and placement and output of

larger FC-WFs. The results are also put into context with

economic aspects of, for example, designing grid codes or

choosing control schemes for larger WFs. More specifically,

the aim of the paper is to determine when and during what

conditions certain design or control aspects are the most im-

portant, both with respect to technical and economic aspects.

II. FC-WF POWER GENERATION ASPECTS

A. Modeling of equivalent circuit of WFs

A wind farm consisting of several wind turbines can in

power flow studies be simplified into a single equivalent unit,

as illustrated in Fig. 1. The impedance of wind farm feeders,

filters, collectors, and step-up transformers may then be trans-

formed into an equivalent impedance of a grid connected step-

up transformer [5]. The active and reactive power capability

of FC-WFs can then be derived from this equivalent circuit.

The grid converter voltage (Vc) is controlled by alterations

of the modulation index, while the the phase angle (δ) is

controlled by changing the switching pattern of the converters.

The maximum value of Vc is a design value determined by

the size and ratings of the wind turbine converters, and it

is an important factor for dimensioning components to meet

different grid codes and requirements [5].

B. Modeling active and reactive power capability

A FC-WF can provide reactive power independently as long

as it is operating within the converter limits, while active

power output is determined by the actual mechanical power

generated by the turbine. The maximum current capability of

a converter can be represented by a circle in the PQ-plane,

given by [5]:

P 2 +Q2 = (VgIc)
2 (1)
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Fig. 1. Equivalent circuit diagram of a wind farm

where P and Q represent the active and reactive power

production at the AC grid connection point, and Vg and Ic
represent the grid voltage and converter current, respectively.

Another limit is constituted by the maximum voltage across

the converter transistors, and consequently the difference be-

tween the grid converter voltage (Vc) and the grid voltage

(Vg). The relationship between P and Q at the converter limit

is given by [5]:

P 2 +

(

Q+
V 2

g

Xeq

)2

=

(

VcVg

Xeq

)2

(2)

where Xeq is the total equivalent reactance of the wind farm.

The maximum values of the converter current and voltage

(Vc,max and Ic,max) are determined by the ratings of the grid

connected converters. The converter current is highest when

active and reactive power are at rated values (Pr and Qr),

while the grid voltage is at the minimum. This relationship,

given in p.u. by simplifying the right-hand side by taking PR

and QR as the MVA base of the system, is given by:

Ic,max =

√

P 2
r +Q2

r

Vg,min

=

√

1 + tan2 θR
Vg,min

(3)

where θR is the rated power factor angle of the converter.

The maximum required converter voltage can be derived using

(2) and it is highest when the grid voltage and the system

frequency are at the maximum level, and the active and

reactive power of the WF are at rated values. This relationship

in p.u. is given by [5]:

Vc,max =
fmaxXeq

Vg,max

√

√

√

√1 +

(

tan θr +
V 2

g,max

fmaxXeq

)2

(4)

where fmax and Vg,max are the maximum frequency and

grid voltage, respectively.

III. SIMULATION APPROACH AND DESIGN

A. Simulation aspects

Several scenarios are simulated, such as varying levels of

wind generation, power control approaches, and design aspects
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Fig. 2. The modified Nordic32 Test System with inclusion of 6 separate WFs

of grid codes. The simulations are based on a modified version

of the Nordic32 test system presented in [11], and the single-

line diagram is found in Fig. 2. The following simulations are

all based on the unstable version of the system, denoted as

the "Operating point A" in the Nordic32 test system and all

required parameters can be found in [11]. All the simulations

are performed in PSS®E version 34.2.0 with its built-in

dynamical models [12].

1) WF placement and generation: To simulate a future

power system with a higher penetration of WFs, six separate

systems (WF1-WF6) have been included into the test system.

The placement of the largest system, WF6, is varied in the

simulations, and two different cases are examined. The first

case is when WF6 is placed in the area denoted as "Central"

(bus 4051), and the second when WF6 is placed in the area

denoted as "North" (bus 4032), see Fig. 2. Furthermore, the

output of the WFs is varied in the simulations, and two cases

are examined: a very high wind case when all WFs generate

95 % of rated P , and a lower wind case when all WFs operates

at 40 % of rated P .

2) Grid code design: In 2016, the European Union (EU)

adopted new regulations regarding connection of power-

generator modules such as larger WFs [3]. The regulations

state the requirements of providing reactive power while oper-

ating at rated capacity and at various levels of grid voltage. The

regulations state the maximum reactive power requirements for

WF owners, with reactive power requirements as a function

between grid voltage and Q/PMAX -ratio. The final specific

design of the grid codes and the requirements are left to be



decided each country’s legislative body. From a societal view,

they should be designed both with respect to grid requirements

of stability and to economic aspects for the WF owner.

In the simulations, three proposed grid code designs are

examined where the capability to provide reactive power under

certain operating points are varied. The three grid code designs

are illustrated in Fig. 3.

(i) Grid Code 1: Illustrated in Fig. 3 as the red dotted

square, the same reactive power requirement is used for

any values of grid voltage. This is a stricter grid code,

requiring higher capacity of converters to be able to

produce reactive power at all operating points.

(ii) Grid Code 2: Illustrated in Fig. 3 as a black step-wise in-

creasing/decreasing function, the adaptive reactive power

requirements are reduced step-wise as the grid voltage

increases. The adaptive grid code reduces the need of

over-dimensioning converters, although not being able to

generate as much reactive power during all conditions.

(ii) Grid Code 3: Illustrated in Fig. 3 as the green dashed

square, an even less strict grid code is adapted, requiring

only 0.15 Q/Pmax at 1 p.u. grid voltage.

3) Voltage control approach: The failure mechanisms of

power electronic devices are complex and affected by numer-

ous factors, where thermal cycling is one of the most critical

failure causes [13]. The life-time of IGBTs in a FC-WF may

be affected both during stable operation and during varying

conditions caused by, for example, wind gusts or varying

reactive power demand. Higher average operating currents

increase the junction temperatures, which in turn make the

IGBTs more sensitive to thermal cycling damage [14].

In response to this, two different strategies for voltage

control of the FC-WFs are simulated. The first one (in coming

simulations denoted as Vctrld) is the same as for regular

synchronous generators, where the FC-WFs always participate

in controlling the voltage to the scheduled level. In the second

control strategy (in coming simulations denoted as Vreserv),

the FC-WFs only participate in voltage control when the grid

voltage (Vg) is equal or less than 0.95 p.u. Thus, in stable

conditions, the reactive power is controlled to be minimized.

However, as soon as (Vg) drops below 0.95 p.u., the reactive

power generation is increased to control the voltage back to

0.95 p.u. The benefits of such an approach would be less

thermal stress and conduction losses of the converter IGBTs.

However, the grid would be less stiff and the the voltage

stability could suffer.

B. System stress level, disturbances, and stability criterion

For all combinations of the design aspects described in the

previous section, the system is stressed until a stability crite-

rion is violated. The stability criterion used in the simulations

is that the post-contingency state is considered stable if, over a

simulation interval of 600 seconds, all distribution bus voltages

are restored above 0.95 p.u. The highest system stress level is

then found by gradually increasing all the loads in the system

and applying a contingency that further stresses the system.
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Fig. 3. Three different grid code designs to be tested in simulations

TABLE I
DATA OF ADDED WFS

Name Bus Replaces Base voltage Xeq Pmax Vsched

(kV) (pu) (MW) (pu)

WF1 1011 - 33.0 0.3 220 1.0520
WF2 4022 - 33.0 0.3 200 1.0170
WF3 1043 g7 33.0 0.3 180 1.0141
WF4 1041 - 33.0 0.3 110 1.0141
WF5 1042 - 33.0 0.3 110 1.0141

WF6 4051 - 33.0 0.3 500 1.0531

or

WF6 4032 - 33.0 0.3 500 1.0531

For each of the gradually increasing load levels, different types

of contingencies are tested, as different design aspects will

cause the system to be sensitive to different faults. To reduce

the number of simulations, only tripping of transmission lines

that connect either of the different regions (excluding the

"Equivalent" region) is tested.

C. Simulation parameters

All WFs are simulated generically using the built-in models

WT4G2 and WT4E2 in PSS®E. The parameters for the

dynamic models are gathered from [12], with reference to a

Siemens 2.3 MW wind turbine. The total Xeq is modeled by

a an explicit step-up transformer of 0.3 pu. The power flow

data of the WFs are presented in Table I. The control mode for

the wind turbines are set to P -priority, where the active power

is kept to its reference value although a larger reactive power

is required to keep the grid voltage constant to the reference

value. Despite the control mode, all converter parameters are

adapted to still allow the WFs to generate the required amount

of reactive power from the present grid codes.

The WF parameter values are dependent on the design

values of the grid codes and can computed using Eq. (3) and

(4). The dimensioning requirement of Vc,max occurs when the

grid voltage is the highest and the maximum requirement of

generated/absorbed reactive power exists.

1) Grid Code 1: The dimensioning requirements occur in

the upper right corner of the depicted grid code in Fig. 3, with

a power factor of cos θR = 0.91 and with Vg,max = 1.05.

Using this value for θR and assuming fmax = 1.01, values of

Vc,max = 1.21 and Ic,max = 1.22 can be computed.
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TABLE II
DESIGN VALUES FOR GRID CODE 2

Vg,max cos θR Vc,max Ic,max

Corner 1 0.9 0.91 1.11 1.22

Corner 2 1.0 0.96 1.13 1.16
Corner 3 1.05 0.98 1.14 1.13

2) Grid Code 2: The dimensioning requirements can occur

in either of the right hand corners of the depicted grid code in

Fig. 3. Compared with Grid Code 1, both Vg,max and θR vary

in this case, causing Vc,max and Ic,max to vary as well. The

three requirements by each corner are evaluated in Table II.

The PQ-capacity diagram is found in Fig. (4) with operating

points for 40 % and 95 % of maximum P marked out. The

largest values of Vc,max and Ic,max is then dimensioning for

the converter. As a comparison, Grid Code 2 allows a smaller

dimensioning Vg,max compared to Grid Code 1, while the

Ic,max requirement is constant.

3) Grid Code 3: The design values are calculated in a

similar manner as for Grid Code 1, resulting in Vc,max = 1.09
and Ic,max = 1.12. The parameters for all grid codes are then

incorporated into the dynamic models of the WFs.

IV. SIMULATION RESULTS

The results for the different simulations cases are presented

Table III, in which all design aspects are varied: grid codes

(type 1 - 3), WF output (High wind and Low wind), and

control scheme (Vcntrl and Vreserv). The increase in load in

% compared to the base case is represented by ∆PL,all. The

last state that the system meets the defined stability criterion

is presented as the result in the table.

1) Impact of grid code design: The different grid codes was

found to have a small effect on the stability of the analyzed

system. For instance, Grid Code 1 (with the strictest require-

ments) only increased the ∆PL,all by 0.2 % respectively 0.4 %

for case type A and B, compared to Grid Code 3 (with the least

strict requirements). However, the relatively small stability

improvement should be put into relation to the, compared

to the whole grid, relatively small increase in reactive power

capacity of the WFs.

In Fig. 5, the generated reactive power and l voltage for case

1, 2, and 9 are presented for the same level of increased load

(7.9 %), each representing a different grid code. The reactive

power output of case 1 and 2 are identical, since neither

the current nor the voltage limitation is met. The generated

reactive power for case 9 is reduced and the voltage collapses,

mainly due to a lower Ic,max-value and higher converter

currents due to lower grid voltages. Although the larger

Ic,max-values only improved the voltage stability marginally

in the simulated cases, the actual benefit of more reactive

power is highly dependent on other factors such as the level of

penetration from wind power in a power system. Since voltage

instability in general is correlated to low grid voltages, over-

dimensioning Vc,max to allow more reactive power output at

high grid voltages could be argued to be an inefficient measure

to increase stability. Instead, a more adaptive scheme, as for

Grid Code 2, would be preferred.

2) Impact of wind power output: The most significant

impact on the LTVS was the placement of the largest WF,

WF6. Not surprisingly, by placing more generation in the

"Central" area, closer to the larger load centers, it resulted in a

significant enhancement of the stability. However, the impact

is highly affected by the output of the WFs and the increase

was found to be reduced during occasions of low wind.

Another aspect to consider is that WFs do not always

generate full active power, both due to wake effects and

wind speed variations. In these cases, the WF has increased

possibilities to support the grid with reactive power, even

without reducing the active power. In power systems with large

penetration of wind power, the system is likely most sensitive

to disturbances during occasions of low wind if the active

power needs to be transmitted long distances from other areas

to compensate the loss of generation. Thus, the ability of a

FC-WF to support the grid with reactive power is also highest

when the need for reactive power is high.

3) Impact of proposed voltage control scheme: The func-

tionality of the proposed control scheme Vreserv is illustrated

in Fig. 6 for a stable version of Case 5A. In the figure, the

reactive power is controlled to zero as long as the grid voltage

is above 0.95 p.u. As the grid voltage decreases below 0.95, the

WF initiates its reactive power output to stabilize the voltage.

The different control strategies had some impact on the

stability of the system and lower levels ∆PL,all were possible

with the proposed control scheme. Again, the impact was

lower during both occasions of low wind, and when WF6 was

located in the "North" area. Although the proposed control

scheme in most cases would not be optimal, the results

indicate that it could be utilized during certain conditions. For

instance, if a larger WF would be located in an area with low

requirements of reactive power, it could be an option to reduce

the wear of converter IGBTs to both extend the life-time of

the devices and to reduce the need for maintenance. However,

this would require that grid codes can be adaptable to allow

different requirements on FC-WFs depending on, for instance,

the placement of the WF or specific need at the grid cite.

V. CONCLUSION

This paper analyzes the impacts on long-term voltage sta-

bility from different integration aspects of FC-WFs, such as

grid codes and reactive power control. The paper has tested



TABLE III
SIMULATIONS RESULTS WITH WF6 LOCATED IN CENTRAL REGION

WF6 located in "Central" area Case 1A Case 2A Case 3A Case 4A Case 5A Case 6A Case 7A Case 8A Case 9A Case 10A

Grid Code 1 2 1 2 1 2 1 2 3 3

WF Output High High Low Low High High Low Low High Low

Control Scheme Vctrld Vctrld Vctrld Vctrld Vreserv Vreserv Vreserv Vreserv Vctrld Vctrld

∆PL,all before stability criterion
8.0 % 8.0 % 1.9 % 1.9 % 7.1 % 7.1 % 1.7 % 1.7 % 7.8 % 1.8 %

violation (% to base case)

WF6 located in "North" area Case 1B Case 2B Case 3B Case 4B Case 5B Case 6B Case 7B Case 8B Case 9B Case 10B

Grid Code 1 2 1 2 1 2 1 2 3 3

WF Output High High Low Low High High Low Low High Low

Control Scheme Vctrld Vctrld Vctrld Vctrld Vreserv Vreserv Vreserv Vreserv Vctrld Vctrld

∆PL,all before stability criterion
5.0 % 5.0 % 1.3 % 1.3 % 3.9 % 3.9 % 1.2 % 1.2 % 4.6 % 1.3 %

violation (% to base case)
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Fig. 6. Generated reactive power and grid voltage (Vg) for WF4, case 5A

different cases and shows, for instance, that over-dimensioning

of a FC-WF does not in all cases increase the stability. If such

over-dimensioning is implemented, it is mainly the Ic,max-

ratings of the converters that should be increased since the

voltage limitation of the converters seldom are reached during

voltage instability events. A restrictive reactive control scheme

is also tested, and although it is found to reduce the stability

in some cases, it could be used during certain conditions to

reduce maintenance and wear of components. Moreover, the

placement of larger WFs is found to have the largest impact

on the LTVS of a power system, and the closer larger WFs are

located to load centers, the more they contribute to the system

stability. Thus, if ancillary services would take into account

the actual improvement that the FC-WFs is providing, such

aspects should be included in the design of those.
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Abstract—This paper reviews and evaluates the main types of
voltage stability indicators (VSIs) based on local measurements
and further provides a background to their development. Due to
weaknesses during dynamic conditions, the bus VSIs based on
Thévenin’s equivalent impedance methods are in general found to
be unsuitable for most corrective applications, but may instead be
used to estimate local loadability margin to voltage instability.
Line VSIs, although requiring some data communication, are
in general found to be more robust and may in most cases be
used both for predictive and corrective applications. Sensitivity-
based VSIs are typically more accurate for detecting voltage
instability, but are instead sensitive to measurement noise and
are highly nonlinear when the system is close to a voltage
collapse, consequently being unsuitable for estimating stability
margins. The VSIs based on the local identification of voltage
emergency situations (LIVES) concept can take into account the
delayed effects from load tap changers, making them suitable for
corrective applications and to use in local protection schemes.

Index Terms—Voltage stability index, voltage instability, syn-
chronized phasor measurements, instability detection, emergency
control, local measurements

I. INTRODUCTION

Voltage instability is a phenomenon that transmission sys-

tem operators (TSOs) continuously have to take into account

during both planning and operation of the power system. An

increasing demand of electric power and the driving force of

maximizing economic benefits have pushed the operation of

the power system closer to the physical limits [1]. In general,

the closer a grid can be operated to these limits, the more

economic and efficient it will be. However, this will also make

the system more vulnerable to contingencies and disturbances.

Hence, there exists a balance between a system that is operated

efficiently and one that is operated securely.

Another trend in the electrical power system is the in-

creasing amount of inverter-based renewable generation and

other power electronic controlled devices (e.g. FACTS and

HVDC) that are being integrated into the power system. These

appliances have generally different and significantly faster

dynamics compared to more conventional equipment (e.g.

synchronous generators). This development will thus with high

probability increase the need of developing faster and more

efficient methods of assessing the system stability [2].

In the last decades, the phasor measurement technology

has opened several new perspectives and methods for wide-

area monitoring and control of the power system [3]. Several

voltage stability indices (VSIs) based on phasor measurements

have been proposed in the literature. The phasor-based VSIs

may mainly be divided into two categories [4]:

1) VSIs based on local measurements: These VSIs are

based on few or no input from other measurements and

are mainly developed using a maximum power transfer

theorem or the existence of solutions for the voltage

equations.

2) VSIs based on observability of whole region: These

methods are generally more accurate than the VSIs

based on local measurements. However, as the name

indicates, they require full observability of the monitored

region and the measurements used in these models

should preferably be filtered through a state estimator

causing increased computation time and complexity.

This paper will perform an extensive review of the devel-

opment of VSIs based on local phasor measurements. The

definition of a local VSI is in this paper defined as a VSI rely-

ing on measurements from only two or fewer buses. Although

PMUs are becoming more widely deployed, few parts of the

power systems fulfill the requirement of full observability.

Further, all of the VSIs based on local measurements can be

extended as the number of PMUs in a power system increases,

allowing TSOs to gradually increase the monitoring system as

the number of installed PMUs increase.

Previous studies have examined the development of some

VSIs, e.g. as in [5], [6]. However, these reviews are more

general in their approach and there is no specific focus

on phasor-based VSIs using local measurements. This paper

examines more the underlying differences and sensitivities to

model simplifications between the VSIs and a specific focus is

also spent on evaluating practical applications of the different

classes. This field of research is also in development and more

recent VSIs are lacking in previous reviews. The paper is

aimed to provide researchers a good starting point into the field

of phasor-based VSIs, as well as giving TSOs an overview of

the potential applications and limits. The paper does not strive

to evaluate all local VSIs, but rather the most prominent and/or978-1-5386-7138-2/18/$31.00 © 2018 European Union



recently developed ones for each class.

The local VSIs may be divided into two main groups,

namely; bus voltage stability indices (bus VSIs) and line

voltage stability indices (line VSIs). The paper is then

organized as follows. In Section II and Section III, the

bus and line VSIs are briefly presented. In Section IV, an

evaluation and classification of these VSIs are presented,

along with a discussion of potential applications. Finally,

concluding remarks are presented in Section V.

II. BUS VOLTAGE STABILITY INDICES

The bus VSIs are in this paper defined as the VSIs only

determining the voltage stability in a single bus and by mainly

requiring phasor measurements from that bus in the grid.

The bus VSIs are based mainly on 3 approaches; either by

using (A) Thévenin’s Equivalent (TE) impedance methods,

(B) sensitivity-based methods using the systems characteristics

in the voltage collapse point, or (C) methods based on the

so called local identification of voltage emergency situations

(LIVES) method [7].

A. Thévenin Equivalent VSIs

The most common approach for the bus VSIs is to use

the TE impedance as a measure of the margin to voltage

instability. Considering the simple system in Fig. 1, consisting

of a TE and a load bus, it can be shown that the maximum

transferable power in the system occurs when |Zth| = |ZL|.
This relationship has been used in several papers, e.g. [8]–[10],

to develop a tracking algorithm that uses the TE impedance to

estimate the proximity to a voltage collapse. The relationship

between the TE equivalents may be stated as:

Eth = V L + Zth · I (1)

where Eth and Zth are the TE voltage and impedance,

respectively, and V L and I the load voltage and current,

respectively. Using the relationship in (1), the values of Zth

can be estimated. The real and imaginary values of Eth and

Zth in (1) results in 4 unknowns, requiring measurements

to be taken at two or more times to solve for the unknown

parameters. The estimation is based on the assumption that

the system is in a quasi-steady-state, where the TE impedance

and voltage are constant during the time of the measurements.

1) Least-squares TE (LS-TE), Impedance Stability Index

(ISI), Total Least Squares TE (TE-TLS): In [8], a least-

squares TE method (LS-TE) is introduced, where a larger

measurement windows is used to handle measurement noise

and the quasi-static TE parameters. The relation between Eth

and Zth are then used as the indicator of the proximity to

voltage collapse. In [9], the impedance stability index (ISI) is

developed by instead using a recursive least-squares algorithm

to track these time-varying parameters. The concept is taken

further by taking into account and allowing communication

of reactive power limits from generators to the local voltage

instability predictor relays. In [10], a method based on the

PL, QL

Zth=Rth+jXth

Eth=Eth∠0° VL=VL∠δ°

I

ZL

Fig. 1. A Two-bus Thévenin Equivalent Circuit

total least squares (TE-TLS) was proposed that proved less

sensitive to measurement noise to other compared methods.

2) Adaptive Method (AD): In [11] and [12], the need for

significant system variations between two subsequent measure-

ments and a large data window is addressed. The method,

denoted as the Adaptive Method (AD) in previous papers,

assumes that Xth ≫ Rth, causing the complexity of (1) to be

reduced from four unknown variables to three. The proposed

algorithm further assumes that Eth and Xth are constant in the

brief interval during their identification, which requires a very

short sampling time. The adaptive method then introduces an

estimation of Eth, which allows the TE circuit to be solved

directly. From the changes in the Xth-value the estimated

value of Eth is then updated. The speed of the adaptive method

is depending on how fast the estimation of the Eth is allowed

to be, where a balance between a fast estimation and a non-

oscillatory estimation in general is desired.

3) Thévenin Equivalent Determination Method (TE-DM):

The assumption of a quasi-steady-state system is not always

true, and simultaneous changes in the system side and the

load side may cause large errors for TE-methods. In [13],

this problem, and the impact of measurement errors, are

addressed. The paper proposes a VSI, here denoted as the

Thévenin equivalent determination method (TE-DM), based

on the following developed relationship:

E2
th = V 2

L + I2Z2
th + 2PLR+ 2QLX (2)

where PL and QL are the active and reactive power. Using

three different measurements and eliminating Z2
th from the

equations allows the equations to be rewritten into:

2∆PR+ 2∆QX +∆V 2
L = 0 (3)

where

∆P = det





1 1 1
PL(1) PL(2) PL(3)

I2(1) I2(2) I2(3)



,

∆Q = det





1 1 1
QL(1) QL(2) QL(3)

I2(1) I2(2) I2(3)



,

∆V 2
L = det





1 1 1
V 2
(1) V 2

(2) V 2
(3)

I2(1) I2(2) I2(3)







and where the number index in parenthesis is the measure-

ment number. The three separate measurements can then be

used to represent and calculate the TE impedance parameters.

To compensate for measurement errors and variations in the

system side, additional redundant measurements are proposed

to be used to reduce the impact of these factors.

B. Sensitivity based bus VSIs

1) S-Difference Criterion (SDC): There are a number of

other Bus VSIs based on other approaches than using the TE-

theorem. In [14] and [15], a sensitivity-based method denoted

as the SDC is presented. The method is based on using

two consecutive measurements of the apparent power on the

receiving end of a transmission line. The method is based on

the fact that at the voltage collapse point, an increase in the

apparent power flow will not increase the received power. The

SDC is defined as:

SDC =

∣

∣

∣

∣

∣

1 +
∆V

(k+1)

r I
(k)

V
(k)

r ∆I
(k+1)

∣

∣

∣

∣

∣

(4)

where V r and I are the measured phasors of the receiving

voltage and current for the measurement k and k + 1. At the

point of voltage instability, the SDC equals zero. In [16] and

[17], the validity of such local sensitivity indices are proven by

introducing a global index, in the paper called the sensitivity-

based Thévenin index (STI). The STI, although requiring data

from wide area monitoring systems, are proposed to be used

as either validating the results, or for predicting the effects of

reactive limits from local indices.

2) Real-time Voltage Stability Index (RSVI): In [18], a

similar VSI to the SDC is developed, where the relationship

between the rate of change of voltage and current magnitudes

are used. The RSVI is defined as:

RSV I = 1−

(

d |IL| /dt

|IL|
−

d |VL| /dt

|VL|

)

(5)

where d |IL| /dt and d |VL| /dt are the rate of change of

current and voltage magnitudes over a specified period of time

(dt). In a stable state, the rate of change of voltage is close

to zero, resulting in RSVI values less than 1. Near the point

of collapse, the RSVI reaches a value of 1 which indicates an

impending voltage collapse.

3) Ambient QV-sensitivity (Γ-VSI): Another sensitivity-

based method is presented in [19], where a measure based

on the slope of the QV-curve is developed. The VSI is based

on the fact that, in the voltage collapse point, the slope of the

QV-curve will become infinite. The VSI is based on a positive

and a negative index, both calculated by the formula:

Γi =
∆Qi

∆Vi

=
∑

j

∆Qij

∆Vi

(6)

where ∆Qij is the reactive power difference between two mea-

surements for each transmission line connected between two

nodes, i and j, and ∆Qi and ∆Vi represents the incremental

change in reactive power and voltage respectively. The data is

split into a positive and a negative subset, which is then used

in a weighted mean average to estimate the sensitivities. The

methods are further tested in [20], where the sensitivity-based

methods are found to be favorable in the sense that that they

do not require any model parameters and may be extended

to be used in every bus in the grid for higher observability.

However, all methods require preprocessing of data as the

high sensitivity to noise in the measurements may cause the

accuracy of the method to be reduced.

C. LIVES concept

1) LIVES and the New LIVES Indicator (LIVES & NLI):

In [7], [21], a method called local identification of voltage

emergency situations (LIVES) is introduced and tested. The

LIVES stability condition is based on monitoring the change

in the secondary voltage after at tap decrease on the primary

side (∆r < 0) of a load tap changing (LTC) transformer, which

simplified may be stated as:

∆V2

∆r
< 0 (7)

where ∆V2 is the change in the secondary voltage. Thus, if a

tap decrease leads to a negative change in ∆V2, this indicates

an unstable condition. Further, the criterion indirectly takes

into account the effect of other taps acting in the system

as it can observe the net effect of various LTCs over a

cycle of tap operations. In [22], this concept is developed

further by monitoring the stability condition of (7), solely

from the transformer bus, by assuming that primary voltage

and current measurements are available. The decreasing tap

change is measured indirectly as an conductance increase

seen from the primary side, whilst the secondary voltage is

indirectly monitored as an increase of consumed active power,

P . The new index, denoted as the New LIVES Index (NLI)

is formulated as:

NLI =
∆P

∆G1
> 0 (8)

where

G1 = Re{I1/V 1}

Simulations shows promise during several different grid

conditions and topologies, allowing early indication of

impending voltage collapses. The method is further tested in

[23], where the method is extended and applied for distance

relays of transmission lines feeding weak areas.

III. LINE VOLTAGE STABILITY INDICES

The line VSIs are based on phasor measurements being

available from both sides of a two-port transmission line and

are mainly based on using one or a combination of three

different approaches: (A) maximum power transfer theorem,

(B) existence of solutions to the voltage equation, and (C)

sensitivity-based line VSIs.
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Fig. 2. Classification and some examples of local VSIs based on phasor measurements

A. Maximum power transfer VSIs

Over the years, several line VSIs based on the concept of

maximal transferable power have been developed. These are

similar to the TE-based methods for the bus VSIs, with the

difference being that phasor measurements are required in each

end on of a transmission line.

1) Transmission Path Stability Index (TPSI), Voltage Col-

lapse Proximity Indicators (VCPIs), Voltage Stability Margin

Index (VSMI): One of the first presented suitable for PMU

applications, was the transmission path stability index (TPSI)

in [24]. In the TPSI, the maximum power transfer occurs when

the voltage drop equals the load-side voltage, according to:

TPSI =
Vs

2
− (Vs − Vr cos δ) (9)

where Vs and Vr indicates the sending and receiving end

voltage, and δ is the angle difference between the two nodes.

This measure is similar to the equal impedance theorem,

although it only uses the voltage measurements on each side of

a transmission line. Other line VSIs based on similar concepts

are the voltage collapse proximity indicators (VCPIs) in [1],

where four so called VCPIs are developed, based on the

maximum transferable power and the maximum possible line

losses that may occur over a transmission line. This is further

examined in other papers such as in [25], where similar VSIs

based on the same principle are proposed. A simple index,

called the voltage stability margin index (VSMI), presented

in [26], uses the angle differences between two buses. The

VSMI, although showing promise, was found to have limited

accuracy for transmission lines with high Q/P ratios.

B. VSIs based on existence of solutions to voltage equation

The methods based on the existence of solutions to the

voltage equation are mainly based on different formulations

of the classical power-voltage relationship with negligible line

resistance. This relationship may be stated as [27]:

Vr =

√

V 2
s

2
−QX ±

√

V 4
s

4
−X2P 2 −XV 2

s Q
(10)

where P and Q is the active and reactive power respectively,

and R and X the line resistance and reactance. It can be shown

that the maximum power transfer occurs when the value of the

inner square root in (10) is zero.

1) Lp, & Lmn & Line Collapse Proximity Indicator (LCPI):

In [28] and [29], two popular indices called Lp and Lmn

are presented, using either the expression for the active or

the reactive power and reformulating with respect to solvable

values for the discriminant of the voltage equation.

In most of the line VSIs, the shunt susceptance is neglected,

which naturally leads to a more restrictive assessment of the

proximity to the voltage instability point. This is addressed in

[30], where a VSI based on the classical ABCD-matrix of a

π-modeled transmission line is defined according to:

LCPI =
4A cosα(PLB cosβ +QLB sinβ)

(Vs cos δ)2
(11)

where A and B are the transmission line parameters from the

ABCD-matrix, and α and β are the respective phase angles

of the A and B components. A large amount of other line

VSIs based on the similar concept are also presented in other

papers.

C. Sensitivity-based line VSIs

1) Voltage-Power Sensitivity Index (VPSI): In [31], the

sensitivity of the voltage-to-power characteristics at the voltage

instability region is used to form a VSI. The VSI, in this paper

denoted as the VPSI, is based on the existence of solutions to

the voltage equation and is based on the fact that dV/dP → ∞
at the point of a voltage collapse. The VPSI is then defined

as:

V PSI =
VL

√

2V 2
s + 2(PrR+QrX)

(12)

When the system is close to the voltage collapse point, the

index of VPSI approaches 1. Although showing effectiveness

in simulations, the practical aspects of the VPSI are affected

by it being highly non-linear when close to the collapse point.

Other events, such as generator capability limits being met,

may also affect the accuracy of the VSI.

IV. CLASSIFICATION AND EVALUATION OF VSIS

A. Classification and attributes

The classification developed in this paper is presented in

Fig. 2 and the general attributes are presented in Table I.

The inherent local feature of the TE-VSIs is one of the main

advantage of that type of indicators, with in principle no

requirements of communication from other buses. However,

several studies, such as in [32], have shown the weakness



TABLE I
ATTRIBUTES AND EXAMPLES OF LOCAL PHASOR-BASED VSIS

Type Subcategory Index Attributes & applications

B
u

s
V

S
Is

Thévenin
Equivalent VSIs

LS-TE [8] Low requirement on data
communication

Provides information on
loadability margins

In general unsuitable for
corrective applications

ISI [9]

TE-TLS [10]

AD [11]

TE-DM [13]

Sensitivity-based
bus VSIs

SDC [14]

Sensitive to measurement
noise

Nonlinear indicator in
collapse point

Suitable mostly for
corrective applications

Γ-VSI [19]

RSVI [18]

Methods based
on the LIVES
concept

LIVES [7]

Suitable for corrective
applications

Fast local assessment of
voltage stability

Used either for weak areas
and/or buses with for LTCs

NLI [22]

L
in

e
V

S
Is

Existence of
solutions to
voltage equation

Lmn [28]

Some data communication
requirements

Predictive and corrective ap-
plications possible

Affected by line parameters
errors

Lp [29]

LCPI [30]

Maximum power
transfer

TPSI [24] Similar to the VSIs based
on existence of solutions to
voltage equation

VCPIs [1]

VSMI [26]

Sensitivity-based
line VSIs

VPSI [31] Similar to sensitivity-based
bus VSIs

of the TE-methods when modeling meshed power systems

during nonlinear and dynamic conditions. The fact that the

TE parameters are estimated over a time window which has to

be wide enough to result in sufficient change in the operating

conditions, whilst at the same time narrow enough to assume

the quasi-steady state of the system, may also significantly

reduce the speed and/or accuracy of these VSIs. Since the

line VSIs use measurements from both sides of a transmission

line, these are less sensitive to changes in, for instance, system

topology. Additionally, they do not have the same requirement

for a filtering window as the TE-VSIs.

The sensitivity-based VSIs, both for the bus and the line

based, are favorable as they do not require any model pa-

rameters. However, they have a drawback of being highly

nonlinear when the system is close to the voltage collapse

point. The sensitivity-based VSIs are also highly sensitive to

measurement noise, which requires some filtering algorithm

either on the measurement values or on the signal of the VSI.

The VSIs based on the LIVES concept, requires similarly as

previous VSIs a filter to reduce noise and short term transients.

These method are developed mainly to be applied to either

buses with LTCs, or as in the case of the NLI, any transmission

bus feeding a weak area.

B. Potential Applications

The characteristics of the VSIs are of high importance to

what kind of practical applications they would be used for. In

general, they may either be used for (i) preventive applications,

or (ii) for emergency/corrective applications [4]. Preventive

applications include the possibility of estimating the local

loadability margin, which can be be used by system operators

to take preventive actions against voltage instability. Corrective

applications include to in real-time detect and warn system

operators of voltage instability, as well as initiate local system

protection schemes (SPS) that, for instance, can give signals

to relays for undervoltage load shedding.

1) Preventive applications: The TE-VSIs and for the line

VSIs, with the exception of the sensitivity-based VSIs, are

mostly suitable for preventive applications. Due to the dis-

cussed weaknesses of the TE-VSIs during dynamic condi-

tions, these may in general be unsuitable for corrective and

emergency purposes. However, in more stable conditions, the

difficulties of estimating the TE parameters, such as the need

of using a large time window for filtering, will be reduced.

Thus, the TE-VSIs may instead be used to, in near real-time,

allow system operators to determine the loadability margin

for that specific bus. Such estimations will allow the system

operators to track the margin in between the conventional,

slower, voltage stability assessments. Most of the line VSIs,

being able to both estimate the distance to a voltage collapse,

and being more robust during dynamic conditions, allows them

to in a larger extent be used for both types of applications.

2) Corrective applications: For all categories of the

sensitivity-based VSIs, the indicator is mainly useful corrective

applications, as those indicators in general are highly non-

linear closer to the collapse point. For corrective applications,

speed and accuracy of the assessment is fundamental. How-

ever, the inability of most local VSIs to take into account the

impact of overexcitations limiters (OELs) and/or the delayed

effects of LTC transformers, will cause slower assessments

during emergency conditions. This has led recent papers to

in a larger extent use so called coupled single-port Thévenin

equivalent model (e.g. in [33]), that in a larger extent can take

into account the effects of, for instance, OELs. Such methods,

although seemingly effective, do require more communication

infrastructure and the simplicity of the VSIs based on local

measurements are thus lost. For the VSIs based on the LIVES

concept, the dynamics of the LTC transformers are being taken

into account, allowing them to perform quick identification of

impending voltage collapses, and thus being highly suitable

for corrective applications and for local SPS.

3) Practical experience: Even though PMUs for a quite

long time have been deployed into the power system in

several countries, practical applications of local VSIs are

uncommon and is to a large extent still considered as a

"future" application [3]. This notion is confirmed when

examining technical reports, where very little practical

experience from local VSIs are reported. Although the

technology and the methods have been developed for several

years, most TSOs seem reluctant of implementing these

methods practically. The rather limited practical use of these

indicators are, according to the authors of this paper, mainly



due to fact that the robustness of the VSIs still to some extent

is undetermined. As blackouts and other major failures are

connected with extremely high costs, the robustness of the

VSIs are of highest concern to the TSO. Thus, from the

view of a TSO, it is more important that a VSI is robust and

accurate than having a fast computation time. Furthermore,

the overall lack of practical experience may itself deter TSOs

to use such methods. Thus, even more research and field

testing of the developed VSIs are required.

V. CONCLUSION

This paper presents a review of the development of VSIs

based on local phasor measurements, and further attempts to

classify the VSIs based on their attributes and applications.

The TE-VSIs, simple in their design but somewhat inaccurate

during dynamic conditions, are mainly proposed to be used

to in near real-time monitor the local loadability margin to

voltage instability. Line VSIs are in general found to be more

robust, whereas the fully local feature is somewhat lost. For

the sensitivity-based VSIs, the main drawback is the high

sensitivity to measurement noise and the nonlinearity of the

indicators. These type of VSIs are thus mainly proposed

to be used in corrective assessments, allowing warnings

to in real-time be communicated to the system operators.

The methods based on the LIVES are able to take into

account some of the delayed effects from e.g. LTCs, making

them suitable for corrective applications and local SPS. The

practical implementations of the local VSIs are limited and

more accurate estimations of the robustness and accuracy of

the methods are required for a more widespread use.
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