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A B S T R A C T

Utility-scale solar photovoltaic (PV) parks have dominated the international market for the past few years.
However, in some countries, like Sweden, utility-scale PV is on the verge to economic viability. Using existing
infrastructure in a resource-efficient manner could be a crucial strategy for a successful implementation at
scale. In this study, a new methodology for a utility-scale solar guide is developed by studying the hosting
capacity in the local grid and identifying land appropriate for PV parks. The method is applied on a rural
municipality in Sweden (512 km2) with a local distribution grid (5,000 customers). The impact on the grid,
if connecting a PV park to a substation, was analyzed through power flow simulations and the geographical
assessment was done using multi-criteria analysis with a Boolean approach. Three different sizes of PV parks,
1, 3, and 5 MWp, were analyzed. Results showed that 3.7% of the studied area is qualified for locating 1 MWp

PV parks. However, if introducing a maximum distance threshold to the nearest substation that can host the PV
generation from the park, the potential is further reduced (e.g., to 1% for a 750 m threshold). Furthermore,
parts of the grid can host PV parks of 3 and 5 MWp, but only near urban areas, where qualified land is
lacking. The results highlight that the proposed methodology can function as a tool in the dialog between
utility companies, municipalities, PV companies, land-owners and other stakeholders in order to find resource-
and system-efficient locations for PV parks.

1. Introduction

One of the major challenges that the electricity grid is facing is how
a 100% renewable electricity system should be designed and controlled,
especially in cases of high shares of variable power generation [1–3].
Today, political goals exist on different levels, both locally and inter-
nationally, for a completely renewable energy system [1,4]. Globally,
the share of photovoltaic (PV) power is still marginal, around 2.7%
(in 2019) of the annual electricity demand, but significantly higher
in several countries and regions (e.g., Germany and Japan) [5]. PV
parks accounted for 62% of the cumulative installed PV power capacity
globally by 2019 [6].

For a resource- and system-efficient expansion, it is important to
find the best locations for PV parks considering a range of different
aspects. Several studies have proposed methods for the site selection
for mainly wind and PV, but sometimes also for other renewable energy
resources (RES), such as biomass [7], geothermal [8] and concentrated
solar power (CSP) [9,10]. In some studies locations for several RES
are identified in parallel [11–13]. While the following literature review
focuses on academic publications, there are some examples of PV site
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selection guidelines from local governments worth mentioning [14–
18]. For instance, IRENA [14] gives a comprehensive guide all the way
from the site selection to the decommissioning of a utility-scale PV
park.

Since the site selection problem to a large extent is spatial, ge-
ographical information systems (GIS) are in most cases used in the
analysis. In the site selection process, one first needs to identify what
criteria are important. The selection of criteria is often done by asking
a group of experts, through interviews or indirectly extracted from the
literature. Since there are more than one criteria used, the process is
often referred to as a Multi-Criteria Decision Analysis (MCDA). In the
simplest form, the criteria are used in a Boolean overlay, meaning that
GIS layers representing different properties of the studied geographical
area are overlaid and certain sites or patches of land that meet all or a
sufficient number of criteria are labeled as interesting [19], e.g., if it is
within a nature reserve or not [20]. Due to its simplicity the method is
fairly common in site selection studies [21–23]. However, a land area
may also be more or less suitable for the purpose in mind, i.e., different
criteria can be assigned weights by a panel of experts and a final score
of each site can be given as the weighted sum.

https://doi.org/10.1016/j.apenergy.2020.116086
Received 7 May 2020; Received in revised form 14 September 2020; Accepted 24 September 2020

http://www.elsevier.com/locate/apenergy
http://www.elsevier.com/locate/apenergy
mailto:david.lingfors@angstrom.uu.se
https://doi.org/10.1016/j.apenergy.2020.116086


Applied Energy 282 (2021) 116086

2

O. Lindberg et al.

The most commonly used MCDA of this kind, used in RES site se-
lection, is the Analytical Hierarchy Process (AHP) [19], first introduced
by Saaty [24], where criteria are compared pairwise by experts in order
to come up with a ranking of all criteria. Other commonly used MCDA
techniques are the Analytic Network Process (ANP), Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS), ELimination
et Choice Translating Reality (ELECTRE) [25] and Preference Ranking
Organisation Method for Enrichment Evaluation (PROMETHEE) [26].

ANP was introduced by Saaty [27] and is a general form of AHP,
with the main difference that inter-dependency between criteria is
considered (used for RES site selection in, e.g., Yazdani et al. [28],
Ebrahimi et al. [29]). TOPSIS, first introduced by Hwang and Yoon
[30], identifies the site which lies closest to the ideal position and
furthest from the least ideal position, used, e.g., in Sánchez-Lozano
et al. [31], Sánchez-Lozano et al. [32], Sindhu et al. [33]. ELECTRE is
a family of MCDA methods, first introduced by Roy [34], which is used
for choosing, ranking and sorting among a set of alternatives. For PV
site selection, the ELECTRE TRI method was used by Sánchez-Lozano
et al. [35]. The method is designed to sort among the alternatives into
predefined categories (e.g., excellent, good, bad, insufficient). ELECTRE
II was used by Jun et al. [36] to choose the best locations for PV/wind
hybrid parks in China. PROMETHEE can help decision makers from
different disciplines to find a proper solution among several alternatives
based on their specific preferences [26]. The method is often used in
combination with another MCDA methodology, such as AHP [37–39].

Sometimes fuzzy set theory (e.g., FAHP) is introduced [40] in order
to take into consideration the non-sharp boundaries between criteria
in the ranking [41–43], which may be the result of differences in the
judgments of the experts or the challenge of interpreting the statements
of the experts.

Several review papers list the most common criteria in RES site
selection [25,44,45]. For instance, Rediske et al. [45] ranks the top six
criteria from literature as (1) solar radiation, (2) proximity to power
lines, (3) slope (of ground), (4) proximity to main roads, (5) proximity
to residential areas and (6) land use. Similar rankings are found in the
other review papers mentioned above.

While solar radiation is the most common criterion in the literature,
it is not always key. For instance, across a regional area (i.e., munic-
ipality or county), with the exception of dramatic topography causing
shading [46,47], the spatial variability of the solar irradiance is low. On
the national scale, however, the spatial variability may be significant.
Also, in a local context, in which the specific placement of the panels is
considered, shading from surrounding objects, predominantly trees (or
buildings in urban areas) becomes important [48–50].

In many regional studies, therefore, other criteria than the solar
resource are considered more important. For instance, Díaz-Cuevas
et al. [13] and Solangi et al. [43] both identified proximity to the grid
as the most important criterion. Even though several studies on MCDA
for PV parks include more or less sophisticated methods for assessing
the solar resource (e.g., Merrouni et al. [22], Suh and Brownson [46],
Sabo et al. [51]), the same is not the case for the power grid. To the
best of the author’s knowledge, only the proximity to power lines or
substations has been studied, neglecting the technical prerequisites of
connecting a PV park to the grid, in particular the impact that a PV
park would have on the existing grid.

The amount of distributed electricity generation that an electricity
grid can handle without compromising its performance during opera-
tion, is usually referred to as the hosting capacity [52]. Several studies
have shown that the hosting capacity of the distribution grid as a whole
exceeds even the most ambitious goals on the penetration of variable
power generation in the system [53–56]. However, most studies also
identify weaker and stronger parts of the grid [57]. A previous study
conducted on the same medium voltage (MV) grid as in the case study
here, showed that connecting distributed PV systems to the parts of the
electricity grid that have the highest capacity can increase the hosting
capacity from 22% to 74% on an annual basis [53], i.e., avoiding the

weaker parts of the grid. It is thus valuable for the Distribution System
Operator (DSO) and the contractor to be aware of these limitations in
order to avoid costly grid reinforcements.

Furthermore, it has been shown that the grid is stronger in the
proximity of urban areas (with some exceptions, e.g., Watson et al.
[57]) than in more rural parts of the grid [53,58,59]. This poses a
dilemma when searching for a suitable site for PV, since available
land near densely populated areas most often is limited. Hence, it
motivates the development of a method that finds locations with high
grid capacity that are also suitable from a land use perspective.

This study advances the field of utility-scale solar guides in a
number of respects. Previous studies have solely focused on either
geographical mapping [21,44,60] or the grid capacity of RES [59,
61,62]. Here, a more detailed analysis is included, combining power
flow analysis (in which currents, voltages and losses are calculated
for the whole distribution grid) with a geographical analysis where
suitable areas for PV parks are identified. Furthermore, we argue that
criteria for the site assessment can be identified from existing literature,
without intervention of experts. Since input data are insufficient or
often of poor quality (which is rarely discussed in the literature), expert
intervention is anyway needed in the last step of the site selection,
irrespective of used MCDA method, which makes it more reasonable to
wait involving experts at all until the last step. Therefore, we propose
a simple Boolean overlay approach, which is easy to communicate to
and between affected stakeholders and which can be used to identify
constraints and opportunities (unsuitable and suitable areas) for PV
parks in combination with the grid analysis. Also, in agreement with the
previous reasoning for regional solar variability, the spatial variability
of the solar resource is not considered here (the same hourly irradiance
profile is used across the study area), since it is negligible for the typical
scale of a local power distribution system. The techno-economics are
to some extent indirectly included in the proposed methodology, such
as proximity to the existing grid that do not need to be upgraded and
the identification of open (non-arable) land for a PV park, while other
economic aspects are not captured in available data sets, e.g., the land
owner’s willingness to make the land available and to what price. The
outcome of the proposed methodology will, however, support the DSO,
regional planner and other stakeholders in their discussion of potential
sites for utility-scale PV parks, where other criteria can be considered
that are not captured in available GIS layers.

The paper is structured as follows; In Section 2 the methodology
of the combined land use and grid analysis is presented including a
case study. Section 3 presents the results from the case study, which
are discussed in Section 4 including ideas for future studies. Finally, in
Section 5, the main conclusions are put forward.

2. Method

This section describes the methodology proposed in the study. Fig. 1
presents an overview of the methodological steps and the input data
needed. The colored part of Fig. 1 describes the steps related to the
spatial analysis, where blue ellipses are input data, yellow boxes are
spatial tools and green ellipses are intermediate and final outputs.
Section 2.1 presents further details about the spatial analysis in order to
identify qualified areas for PV parks. The uncolored part of Fig. 1 relates
to the grid analysis of the proposed methodology. Parallelograms at
the top are input data, round-edged boxes are methodological steps,
rhombuses are important query points and rectangles intermediate
and final outputs. Section 2.2 gives further details of how the grid
capacity was analyzed and Section 2.3 presents a case study for which
the methods were evaluated. Finally, data used in the case study are
presented in Section 2.4.
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Fig. 1. Flowchart of the proposed method for deriving a utility-scale solar guide. Colored boxes represent the geographical analysis and non-colored boxes the power flow analysis
(of the i:th substation out of N total). The thick-lined ellipses at the bottom right indicate the final output of the process, i.e., the approved areas and substations for PV parks.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.1. Identification of qualified areas

The selection of suitable land for PV parks was based on MCDA
with a Boolean overlay approach, where areas were classified as either
‘suitable’ or ‘unsuitable’, due to conflicting interests as shown in Ta-
ble 1. All GIS layers in Table 1 are part of the Municipal Comprehensive
Plan (MCP) of Herrljunga (see Ref. [63] in Swedish). An MCP is a
common requirement in many countries according to law, including
Sweden [64]. Most of the layers are produced by national authorities,
while some are produced by the municipality. Some layers have open
access (see footnotes in Table 1), while others do not. However, since
it is natural to produce a solar guide in close cooperation with the
municipality, the layers in the MCP can be provided by the municipality
upon request. Unfortunately, only the Swedish Land Survey provide
detailed metadata in English about their layers [65,66].

‘Pasture Land’ was considered suitable, because there are several
examples of coexisting livestock and PV parks (see e.g., [16]). ‘Other
Open Land’ is defined as open land of vegetation less than 1.5 m high,
most commonly former agricultural land often of low or non-productive
value, but also open land for special, non-agricultural use (for a full
definition, see p. 87 of [65]). However, just as studies of the roof-top
PV potential cannot give a definite answer on what buildings may be
used for PV (due to economy, construction, obstacles such as chimneys
that are difficult to survey, etc.) [48,67], a solar guide for land-based
PV systems can merely indicate what lands that are most likely to be
used.

Furthermore, several types of land were considered unsuitable.
According to the Swedish Environmental code [68], a land or water
area is considered a natural reserve if it is important for preserving
biodiversity and valuable habitats or to meet the needs of human
outdoor activities. Natura 2000 is a network of protected areas, in the
EU, with the purpose to protect biodiversity. Both natural reserves
and Natura 2000 are also considered national interests according to
Swedish law [68]. Hence, these areas were considered unsuitable for
PV parks. According to the same law [68], a general shore protection
within 100 m from water bodies prohibit new constructions or mod-
ifications to the landscape, but exemption can be granted if applied
for. For the three largest lakes in the municipality, there is, according

to the MCP, an extended shore protection within 200 m (see Fig. 3).
Therefore a new layer was produced based on the water layer in the
Topographic map [65]. It represents the shore protection around the
three largest lakes (200 m) and water bodies exceeding 30,000 m2. The
layer also includes the two larger streams in the northwest and east of
Herrljunga (see Fig. 3), as they may be subject to flooding, but also
have high recreational value.

Other national interests that were considered unsuitable included
cultural heritage sites and areas claimed by the Swedish Armed Forces.
Densely populated urban and rural areas were considered unsuitable
for PV parks due to the proximity to buildings; a minimal distance of
100 meters was set as a threshold between a PV park and buildings,
in order to limit the visible impact it may have on the occupants,
rather than making room for urban growth. Some general guidelines
on visibility assessment of solar farms have been proposed [69–72], in
which expert-based landscape character and visible impact assessment
are the most widely used methods (see e.g., Amalgam Landscape [73],
Eco Logical Australia [74]). However, while these methods are time-
demanding, automatic tools for quantitative visibility assessment have
been proposed, but these have so far mostly focused on roof-applied PV
systems in an urban context [75,76].

Areas reserved for rural development at the waterfronts, if included
in the MCP, were also considered unsuitable. In Sweden, multiple
municipalities have developed corresponding wind guides, where suit-
able areas are identified. Because these areas are already reserved for
wind power they are considered unsuitable for PV parks. However,
this is a conservative assumption since, due to the negative correlation
between wind- and solar power generation [77], it may be beneficial
to co-locate these and thereby utilise the connection to the transformer
more efficiently. Finally, between a PV park and roads, a minimal
distance of 10 m was set. Since a connection between the PV park and
an existing substation may be a substantial part of the project cost,
different distances (hence marked with 𝑋 in Fig. 1) were considered.

Since suitable and unsuitable areas sometimes overlap, e.g., a suit-
able open area may be part of a ‘Natura 2000’ area, these over-lapping
areas were filtered out (using difference according to Fig. 1) in a
Geographical Information System (GIS), in this case QGIS [78]. Fur-
thermore, since a 1 MWp solar park was considered the smallest size
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Table 1
Layer (and name of map, if the map consists of multiple layers) of each land, classed as either suitable or unsuitable and
including its source (responsible institution) and download link as footnote, if available.

Layer (Map) Source

Suitable

Other open land (Topographic Mapa) Swedish Land Survey [65]

Pasture land (Agricultural blockb) Swedish Board of Agriculture

Unsuitable

Agricultural land (Agricultural landb) Swedish Board of Agriculture

Built environment (MCP) Herrljunga Municipality

Buildings (Property Map) Swedish Land Survey [66]

Forest (Topographic Mapa) Swedish Land Survey [65]

Nationally designated areas — Cultural heritagec County Administration Board

Nationally designated areas — Military areasd Swedish Armed Forces

Nationally designated areas — Nature conservatione Swedish Environmental Protection Agency

Natura 2000 — Habitat directivef Swedish Environmental Protection Agency

Natural reserves (Topographic Mapa) Swedish Land Survey [65]

Other designated areas (MCP) Herrljunga Municipality

Roads & Railways (Topographic mapa) Swedish Land Survey [65]

Water (Topographic mapa) Swedish Land Survey [65]

Wind power (MCP) Herrljunga Municipality

ahttps://www.lantmateriet.se/en/maps-and-geographic-information/open-geodata/.
bhttps://jordbruksverket.se/download/18.17cef05d170e1ff7ea95b8d7/1584439006661/JORDBRUKSBLOCK2020.zip.
chttp://ext-dokument.lansstyrelsen.se/Gemensamt/Geodata/ShapeExport/RAA.RAA_RI_kulturmiljovard_MB3kap6.zip.
dhttp://www.forsvarsmakten.se/siteassets/4-om-myndigheten/samhallsplanering/shapefiler/riksintresseomrade_av_betydelse.
zip.
ehttp://gpt.vic-metria.nu/data/land/RI_Naturvard.zip.
fhttp://gpt.vic-metria.nu/data/land/SCI_Rikstackande.zip.

for a park, a constraint of 20,000 m2 was used to define a ‘qualified
area’, which is the final layer of the land use analysis (see Fig. 1). The
corresponding areas for the 3 and 5 MWp parks were set to 60,000 and
100,000 m2, respectively. Fig. 2 gives an example of how a qualified
area can be identified from the layers; suitable, unsuitable, roads,
buildings and water.

2.2. Simulation of grid impact from PV parks

This section describes how the grid impact of PV parks was deter-
mined. In Section 2.2.1 the power flow simulation method is presented,
in Section 2.2.2 the PV power generation model and finally in Sec-
tion 2.2.3 how qualified substations for the connection of PV parks were
identified.

2.2.1. Power flow simulations
Power flow simulations are used to calculate bus voltages, line cur-

rents and power losses, both active and reactive, in a power grid. The
power flow equations derive from Kirchoff’s law and can be expressed
as [79]:

𝑃𝑖 =

𝑁∑

𝑛=1

|𝑌𝑖𝑛𝑉𝑖𝑉𝑛|𝑐𝑜𝑠(𝛿𝑖𝑛 + 𝜃𝑛 − 𝜃𝑖), (1)

and

𝑄𝑖 = −

𝑁∑

𝑛=1

|𝑌𝑖𝑛𝑉𝑖𝑉𝑛|𝑠𝑖𝑛(𝛿𝑖𝑛 + 𝜃𝑛 − 𝜃𝑖). (2)

Here, the active and reactive power 𝑃𝑖 and 𝑄𝑖, respectively are
known for each hour and bus 𝑖. Also the admittances 𝑌𝑖𝑛 = |𝑌𝑖𝑛|∠𝛿𝑖𝑛
between bus 𝑖 and all other 𝑁 nodes are known (from the cable
impedances), while the voltages (𝑉 ) and phase angles (𝜃) are unknown.
One of the buses needs to be assigned as slack bus, which means that it
remains at a constant voltage due to unlimited power flow to or from
the grid. It is natural to assign the feeding substation as slack bus, which
is normally equipped with an on-load tap changer (OLTC) to keep the

voltage constant. The known voltage at the slack bus results in 2(N-
1) unknowns and equally many non-linear equations that need to be
solved.

Since the distribution grid is meshed, the power flow equations
was solved using the Newton–Raphson method, which is a standard
iterative method for solving the power flow equations, implemented in
a Matlab script used in previous studies [80]. The simulations were run
until a set fault tolerance was reached (i.e., the difference between the
left- and right hand sides of Eqs. (1) and (2)), in this case 0.0001 W

(see Fig. 1).

2.2.2. PV power generation model
A simple PV system model [80] was used to generate the electrical

power produced by a PV park. Included parameters are the PV panel
tilt (40◦), azimuth (0◦ or due south), albedo (constant at 0.3) and
geographic location (58.08N, 13.02E used for all sites), which are used
to calculate the hourly solar irradiance on the tilted (𝐺𝑇 ) plane of the
PV arrays based on the Hay & Davies model [81]. It should be noted
that internal shading depends on the shape of the park, but it was
neglected, since it would not affect the over-voltages and -currents. The
size of 20,000 m2∕MWp is a conservative estimate based on existing
Swedish parks, which in reality also will depend on the shape of the
park. The power output from the PV park is:

𝑃𝑃𝑉 = 𝐺𝑇𝐴𝜂𝑚𝑜𝑑𝜂𝑠𝑦𝑠. (3)

where 𝐺𝑇 is the incident solar irradiance, 𝐴 is the total PV array area
of the park, 𝜂𝑚𝑜𝑑 = 17% is the PV module efficiency at Standard Test
Conditions (STC) and 𝜂𝑠𝑦𝑠 = 80% is the total system efficiency, in which
losses in the inverter, cables and soiling of the PV modules are included.

2.2.3. Identification of qualified substations
In the process of identifying ‘qualified substations’ for the connec-

tion of PV parks (see Fig. 1), a ’worst-case’ week (nr 27 of 2018) of
low load, due to Swedish holidays, but at the same time high solar
irradiance, was chosen for the power flow simulations. Simulated PV

https://www.lantmateriet.se/en/maps-and-geographic-information/open-geodata/
https://jordbruksverket.se/download/18.17cef05d170e1ff7ea95b8d7/1584439006661/JORDBRUKSBLOCK2020.zip
http://ext-dokument.lansstyrelsen.se/Gemensamt/Geodata/ShapeExport/RAA.RAA_RI_kulturmiljovard_MB3kap6.zip
http://www.forsvarsmakten.se/siteassets/4-om-myndigheten/samhallsplanering/shapefiler/riksintresseomrade_av_betydelse.zip
http://www.forsvarsmakten.se/siteassets/4-om-myndigheten/samhallsplanering/shapefiler/riksintresseomrade_av_betydelse.zip
http://gpt.vic-metria.nu/data/land/RI_Naturvard.zip
http://gpt.vic-metria.nu/data/land/SCI_Rikstackande.zip
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Fig. 2. Illustration of how a qualified area is identified from the layers suitable, unsuitable, roads, buildings and water.

Fig. 3. The municipality of Herrljunga (red solid line) including urban (purple) and rural (yellow) MV/LV substations and the separation between the two subgrids (red dashed
line). The three largest lakes and two largest streams with a shore protection of 200 and 100 m, respectively, are marked with blue [65]. The in-folded map illustrates the location
of the municipality in Sweden. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
© 2020 Google Map data.

power generation corresponding to a 1, 3 or 5 MWp park was added
to a substation and a power flow simulation was performed for the
whole distribution grid. The PV power generation was then successively
moved from one substation to the next and the power flow simulation
was repeated in each step, as illustrated in Fig. 1, until all substations
had been analyzed. In each power flow analysis, not only the substation
itself but also the neighboring substations were evaluated with respect
to a set of power quality criteria, and the number of neighboring
substations not meeting the criteria was determined. Previous studies
have shown that the most important criteria are the voltage rise and
to some extent the load on the transformer and cables (i.e., over-
currents) [57,59]. These were also the two criteria examined in this

study. In addition, it was examined if a park of a certain size connected
to a certain substation gave rise to lower losses in the grid as a whole.

The results from the power flow simulation were then linked to the
geographical positions of the substations. Those substations for which
a PV park did not violate the power quality criteria of the grid as a
whole were deemed ‘qualified substations’. Combining the qualified
areas (see Section 2.1) and substations will result in ‘approved areas’,
which are linked to ‘approved substations’ for PV parks. In order to
find these locations, a maximum threshold has to be set for the distance
between the land area and closest qualified substation, which to a large
extent depends on the local context, not least economics. As mentioned
previously, proximity to the grid is identified as one of the key criteria
in PV site selection studies [25,44,45]. For instance, thresholds could be
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set based on the recommendations of pricing for new grid connections.
In this study, a definite threshold is not set, but it is varied over a
wide range of distances to determine the sensitivity of the number of
approved substations to the threshold.

2.3. Case study

The methods described in Sections 2.1 and 2.2 were applied to
a local distribution grid, which roughly follows the extent of the
municipality of Herrljunga, Sweden (N58.0, E13.0) and is maintained
by the DSO Herrljunga Elektriska AB. It is a 10.8 kV three-phase
medium-voltage (MV) distribution grid, separated into a north and
south part (see Fig. 3). There are connections between the north and
south parts of the grid, but these are kept open by disconnectors and
the two grids are operated (and thus simulated) separately. The grid has
approximately 5000 end-users in 337 low-voltage (LV) grids connected
to MV/LV substations. An illustration of the substations in relation
to the geographical extent of the municipality is shown in Fig. 3.
To compare the impact that PV parks have on the grid in rural and
urban areas separately, substations within land areas defined as ‘built
environment’ or ‘other designated areas’ (see Table 1) were classified
as urban (purple in Fig. 3). Both the north and south MV grids consist
of rural areas as well as a smaller urban area.

The distribution grid is connected to the regional high-voltage (HV)
grid via two HV/MV substations (i.e., the northern and southern sub-
grids, respectively, according to Fig. 3). Unlike the MV/LV substations,
the HV/MV substations are equipped with OLTCs for voltage control.
The OLTCs are kept at fixed voltage on the MV side of the distribution
substations, meaning that these stations serve as slack buses in the
power flow analysis.

While land use data are fairly easy to get access to for any Swedish
region, it is more challenging to come across detailed grid data. How-
ever, since data for the power consumption in every MV/LV substation
as well as the impedances of every cable were available, it was possible
to calculate the voltages and currents in the whole MV grid on hourly
basis. The power-quality standard EN 50160 states that the 10-min av-
erage voltage magnitude deviation at end-users in the public European
distribution grids must be within ± 10% of the rated voltage [82]. Since
this study focuses on the MV grid, a lower acceptance threshold must be
set in order to give slack to deviations in the LV grid and the lower time
resolution of the load data (hourly). This threshold is not defined in the
EN-50160 standard, but national recommendations exist (e.g., 2.5% in
Sweden [83]). After discussions with the DSO, the voltage magnitude
deviation threshold at the substation was set to 3% in this study.

Three different sizes of PV parks (1, 3 and 5 MWp) were simulated
following the procedure outlined in Section 2.2 and Fig. 1. These were
chosen as they represent typical sizes of PV parks currently deployed in
Sweden. Since most cables in the grid could not carry electrical power
above 5 MWp, larger PV parks were ruled out.

2.4. Data

The MV grid data consist of interconnections between buses and
lines, per-km cable impedances, and cable lengths. The load data
consist of hourly end-user loads from 2018, aggregated on MV/LV
substation level. Data of higher resolution could not be used to avoid
conflicts concerning personal data defined by the General Data Protec-
tion Regulation (GDPR). Since only the active power is reported, a static
power factor of 0.95 was assumed for an estimation of the reactive
power (cf. [59]).

Hourly data for solar irradiance were retrieved from the STRÅNG
model, developed by the Swedish Meteorological and Hydrological In-
stitute, the Swedish Environmental Protection Agency and the Swedish
Radiation Safety Authority [84].

Geographical data were retrieved from the property map from the
Swedish Land Survey [66] and Herrljunga municipality’s MCP. The geo-
graphical data consist of current land use along with local strategies and

Table 2
Comparative statistics in percentage with regards to over-voltages, over-currents and
lower losses between urban and rural areas and scenarios of PV parks of 1, 3 and 5
MWp. Total numbers of urban and rural substations are presented in brackets.

% Substations Urban (51) Rural (286)

1 3 5 1 3 5

[MWp] [MWp]

Over-voltages 0 12 16 10 74 90

Over-currents 0 10 31 0 46 82

Lower losses 100 45 10 21 1 0

Table 3
Unsuitable, suitable, qualified and approved area (km2) and substations, respectively,
for PV parks of 1, 3 and 5 MWp.

MWp Area (km2) Substations (№)

1 3 5 1 3 5

Unsuitable — 115 — —

Suitable — 71 — —

Qualified 17 11 8 309 119 73

Approveda 4.6 1.2 0.6 98 9 2

Total — 512 — — 337 —

aFor the case of 750 m.

future goals for the municipality. The quality of the geographical data
is usually high for large areas such as forests, open water, plowed fields
and settlements. However, the quality might be lower for areas hard to
distinguish due to gradual transitions such as thinning tree lines [66].
Awareness of the data limitations is important when evaluating the
results, e.g., land use data classification may be too coarse, not up-
to-date or poorly defined. Hence, a manual assessment of the areas of
interest is needed and common data limitations may be reported back
to the data provider. Geographical coordinates for each substation were
provided by the DSO Herrljunga Elektriska AB.

3. Results

Here results from the case study are presented. Qualified substations
from the power simulations are presented in Section 3.1 and qualified
areas in Section 3.2. Approved areas and substations are presented in
Section 3.3 and finally, an example of how the results may be used in
a utility-scale solar guide 3.4, is presented.

3.1. Qualified substations

Three scenarios, representing PV parks of 1, 3 and 5 MWp, re-
spectively, were studied for the local distribution grid. As outlined
in Section 2.2, for each scenario, PV parks of a certain size were
sequentially moved from one substation to the next and in each step
a power flow simulation was performed for the worst-case week in
order to evaluate in which substations (if any) that the PV park would
cause over-voltages and/or over-currents and for how many hours (see
Fig. 1). If the overall power losses in the grid would decrease or not, due
to the PV park, was also determined for the same week. This procedure
was repeated until all 337 substations had been evaluated (see Fig. 1).
Results from the three scenarios are summarised in Table 2.

Over-voltages are also represented geographically in Fig. 4, color-
coded according to number of hours of over-voltage for the substation
itself (smaller circle) or number of neighbors affected (enclosing circle).
Thus, green circles not within an enclosing circle represent substations
that are qualified for PV parks.

For the first scenario (1 MWp), results show that over-voltages
within the urban areas never surpass the nominal voltage by more than
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Fig. 4. Maps of substations in the distribution grid color-coded according to the number of hours of over-voltage (small circles) and, if in question, the number of affected
neighboring substations (enclosing circles) when introducing PV parks of (a) 1 MWp, (b) 3 MWp and (c) 5 MWp, respectively. Blue markers represent the HV/MV substations. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
© 2020 Google Map data.

Fig. 5. Map of Herrljunga municipality where green areas represent qualified areas for a 1 MWp PV park.

© 2020 Google Map data.

3%, i.e., all urban substations are classed as ‘qualified’. Table 2 also
shows that a PV park of 1 MWp would also lead to lower power losses
in the grid as a whole, if applied in any urban substation. However,
over-voltages in the rural areas occur in 10% of the substations. Also,
a 1 MWp PV park only leads to lower losses when applied at 21% of
the rural substations.

Fig. 4 shows that while for 1 MWp PV parks there are plenty of
possible locations, it is less so for 3 MWp and 5 MWp parks. For most
cases, the power losses in the grid will actually increase (i.e., lower
losses for less than 50% of the substations in Table 2). The likelihood
of over-voltages in the urban areas is still relatively low for 3 MWp

(12%) but much higher in the rural areas (74%). Over-currents in cables
between substations occur in 10% of the power flow simulations when
PV power generation is added to urban substations. The corresponding
number for rural substations is 46%. For the 5MWp case, the number of
qualified substations is further restricted to locations around the urban
areas, as Fig. 4(c) shows.

3.2. Qualified areas

Table 3 presents a summary of the total area and number of sub-
stations after certain steps of the methodology were applied on the

case study object. The total area of Herrljunga municipality is about
512 km2. Suitable land area is 71 km2 (or 14%), but the qualified area
is limited due to overlapping unsuitable areas and the minimum size
needed for a 1, 3 and 5 MWp PV park (20,000, 60,000 and 100,000
m2, respectively). The resulting qualified area is, thus, 17, 11 and 8 km2

for the respective park sizes. As an example, in Fig. 5, the area that is
qualified for a 1 MWp PV park is shown, which corresponds to 3.2% of
the municipality area. For 3 and 5 MWp PV parks, the corresponding
shares are 2.1% and 1.6%, respectively.

3.3. Approved areas for PV parks

In this section we present results regarding approved areas for
PV parks, i.e., qualified areas that are located within reach from at
least one qualified substation, in line with the proposed methodology
(illustrated in Fig. 1).

Going back to Table 3, we see that if a maximum Euclidean distance
of 750 m between the edge of a qualified area and a qualified substation
is introduced, approved areas and substations are further reduced com-
pared to the qualified. For a 1 MWp PV park, the approved land area is
4.6 km2 and the number of approved substations is 98. Just as can be
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Fig. 6. The number of substation/land pairs as a function of the internal distance for
1, 3 and 5 MWp PV parks.

seen in Fig. 6, the approved land area and number of substations for
larger PV parks is dramatically smaller, which to a large extent can be
explained by the concentration of qualified substations near the urban
areas (see Fig. 4(c)), where there is a lack of sufficiently large qualified
areas within reach.

3.4. Utility-scale solar guide examples

Fig. 7 illustrates an example of how a utility-scale solar guide
could be used based on the combined results from the grid simulation
and the geographical mapping. Fig. 7(a) gives an overview of the
substation/land pairs that could be used for 1, 3 and 5 MWp with
respective color codes, if a maximum of 750 m between the approved
land and substation is allowed. This threshold limit is related to the
cost for the project, which is context specific and may vary between
and within countries. Fig. 6 illustrates the number of substation/land
pairs available as a function of their internal distance. For the larger
park sizes, the number of substation/land pairs does not increase
significantly with the distance. This is especially true for the 5 MWp

park, which reaches the maximum of 2 parks already at 500 m. One
likely explanation could be that the grid is stronger closer to the urban
areas, hence it is only here that larger parks are possible. At the same
time the substations are closer to each other here, which means that
there is always a qualified substation relatively close to a qualified
land area. In the rural areas, on the other hand, the distance between a
qualified land area and its nearest substation is often longer than 500
m.

Fig. 7(b) represents the white box in Fig. 7(a). The green color of
both the land area and substation indicates that a 1MWp park in theory
could fit here. The first apparent limitation one may think of is the
irregular shape of the land area, which may make it impractical to
install a solar park in whole area. However, there are several examples
of PV parks using narrow strips of land (e.g., [49]). Other likely reasons
why the land cannot be fully utilised are obstacles such as uneven,
rocky or wet terrain, groups of trees acting as obstacles or causing
shading, or shading from an adjacent forest.

4. Discussion

As outlined in the introduction of this paper, the main novelty of
the methodology proposed here is the combination of traditional land
use analysis in RES site selection methods and power flow analysis of
the local grid. In recent review papers [25,44,45], the proximity to

power lines or substations are identified as one of the most influential
criteria in RES site selection problems, yet only the distance to the
grid infrastructure is evaluated. Several studies also put weight on the
proximity to urban areas, defining a large distance as beneficial [45].
This conclusion is made for good reasons, as land near urban areas are
more valuable and a PV park may interfere with the recreational values,
i.e., people cannot move as freely due to the barrier that a PV park may
give rise to. On the other hand, as this study has shown, it is only near
urban areas that the grid is strong enough to host a larger PV park (>1
MWp) if connected to a 10 kV substation, i.e., this contradiction may
result in suboptimal recommendations of PV park sites.

Even though Sweden has a relatively low PV penetration level from
an international perspective (0.3% in 2018 [85]), DSOs are already
experiencing some issues, not least because new PV systems are often
reported to the DSO after the installation is done. This makes it tricky
for the DSO to take counter-measures in case the grid cannot host
the new generation. The other problem is that Sweden has 170 local
DSOs, of which a majority is small, i.e., of similar size as Herrljunga
Elektriska AB, who provided the data for the current case study. Many
of these DSOs do not have the knowledge or tools to estimate the
impact of distributed generation in their grid, and are therefore acting
conservatively, not promoting PV (nor charging of electric vehicles).
Of course these small DSOs could get help externally, but the recently
introduced GDPR makes them anxious and therefore restrictive on
handing out any data with the risk of violating the new EU law. This
last point, we think is a major factor why there are so few (if any) RES
site selection studies that integrate detailed analysis of the local grid.
It should be noted that in many grid integration studies, unidentified
grids, such as the IEEE test grids, are used to test new methods, partly
for benchmarking reasons, but also due to the lack of access to real grid
data [86].

While Sweden already is seeing some issues when introducing PV
in weaker parts of the local grid, EU countries with an extensive
PV penetration are already placing restrictions on the feed-in to the
grid, not at least to comply with the new Network Code Requirements
for Generators (NC RfG) [87]. The most obvious example of national
grid code requirements for PV are those from Germany, where fre-
quency disconnection settings of the inverter have been diversified
(to avoid a domino effect of disconnections in case of a frequency
disturbance) and PV systems below 30 kWp should be able to limit
their power production to 70% of rated power [88]. Therefore, the
proposed methodology should be valuable in an international perspec-
tive. Furthermore, the case study may be used as a proof-of-concept
in the dialog with other DSOs that want to know their grid better but
are worried about GDPR or other security aspects. A natural next step
would be to ask affected stakeholders, such as the municipality, to
make a more detailed assessment of one or a few identified sites and
then follow the process and their dialog with other stakeholders. Such
assessment would include economic and potentially other aspects that
were foreseen or could not be captured by the quantitative approach
that the proposed methodology provides.

Furthermore, a utility-scale solar guide would not only benefit
the DSO, but would also allow other stakeholders, such as regional
planners, landowners and contractors to discuss the best locations for
PV parks in the area. For instance, landowners who do not have the
ambition or the resources to build a PV park can lease the land to
someone that does.

Regarding the technical aspects of the methodology, a number of
possible improvements and extensions can be imagined. In this study,
the impact of adding a PV park to just one substation, and not to several
at the same time, was investigated in each power flow simulation, in
order to evaluate the impact on the grid in its current state. While this
was not the main focus of this study, it is of course possible and of inter-
est to study the impact from multiple parks (or roof-mounted systems),
which has been done extensively in the past. For instance, higher PV
penetration can be studied by randomly placing PV parks in the grid



Applied Energy 282 (2021) 116086

9

O. Lindberg et al.

Fig. 7. In (a), approved substation/land pairs with an internal distance of max 750 m illustrated for PV park sizes of 1 MWp (green), 3 MWp (blue) and 5 MWp (yellow),
respectively. The white box in (a) represents the zoomed-in usage example of the utility-scale solar guide in (b). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
© 2020 Google Map data.

one by one and running power flow simulations before adding every
new one. The process can be repeated as a Monte-Carlo simulation to
determine the probability that a PV park in a certain location will cause
future problems in the grid given different deployment scenarios.

Furthermore, it is also important to study how the proposed method-
ology may be integrated with the DSO’s and physical planner’s current
tools for grid and spatial planning (i.e., the MCP). Not at least, due
to grid modifications and extensions, new loads or generators, and
changes or re-classifications of the land use, there is probably a need
to re-run the analysis on regular basis.

In the introduction, it is argued that the solar resource does not
necessarily have to be mapped in high detail for a regional study, since
the spatial variability on hourly basis would be negligible. This is true
if shading is not considered. However, sites that are declared approved
following the methodology proposed here should be further examined
before choosing them as actual PV park sites. In some cases, sites will
be ruled out because of circumstances not captured by the geographical
data, such as misclassification or that other intentions exist for the
area. Since pasture land is considered a viable option due to its multi-
purpose nature [16], it is likely that there are trees populating the area
of interest. These trees could then either be cut down (if economically
viable) or treeless parts of the pasture land could be reserved for the
PV park. While a digital surface model (DSM) can be derived with high
resolution in urban areas due to the access of LiDAR data, in rural areas
the resolution is lower and often limited to a digital elevation model
(DEM) [41,57], which in contrast to a DSM does not consider trees
and buildings and other objects that may shade a PV system. For a
meaningful solar resource assessment when surveying a potential PV
park in a rural setting in detail, it is therefore suggested for future
studies to develop methods that could be used to estimate the impact
from shading in the absence of LiDAR data, e.g., land use data or
satellite images.

5. Conclusions

In this study the impact that utility-scale PV parks have on the
distribution grid are incorporated into a traditional Boolean overlay-
based PV site selection methodology. Results show that while patches of
land representing 3.2% of the total area in a rural Swedish municipality
are qualified for a 1MWp PV park, only patches representing 1% can be
used without grid reinforcement and assuming a maximum distance of
750 m to the nearest substation that could host the PV power generation

from the park. However, if multiple parks are planned, this percentage
will likely decrease. For larger parks (3 and 5 MWp), the corresponding
available land is even less (0.2% and 0.1%, respectively). This can be
explained by the lack of appropriate land near urban areas where the
grid is strong enough to host the PV power generation. As the proximity
to the grid infrastructure has been identified as key in several previous
PV site selection studies, utility-scale solar guides produced using the
methodology proposed here may be useful when different stakeholders
consider the establishments of PV parks, e.g., landowners, regional
planners, grid operators and contractors. A solar guide may also be
integrated in the comprehensive municipality plan just as wind guides
have been previously.
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