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Abstract— This paper presents a method to optimize an 

electric powertrain platform, capable of addressing the needs of a 

wide range of vehicle types while taking advantage of economies 

of scale and reducing time to market. The optimization includes 

all electric powertrain components from the electrical machine 

and inverter to the transmission. The objective is to minimize both 

the operational and electrical machine cost. Detailed scalable 

powertrain models are developed and the Particle Swarm 

Optimization algorithm (PSO) is applied to achieve the optimal 

design. Results show the benefits and limitations of adopting a 

platform approach depending on the volumes of the specific 

applications.  
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I. INTRODUCTION  

Powertrain optimization for electric vehicles has emerged as 
a significant area of research in recent years. Most of the 
academic literature has focused on the modelling and optimizing 
the different components of the powertrain separately. For 
example, a methodology to quickly estimate the performance of 
an electrical machine (EM) by changing the length, outer radius 
and number of turns of a base design is presented in [1] and a set 
of scaling rules for permanent magnet machines is described in 
[2] and used in [3] [4] to find an optimal electrical machine for 
the applications under study. Similarly, a methodology to 
estimate the dimensions, performance, and manufacturing cost 
of the main components in a power electronics converter is 
shown in [5] and that work takes advantage of pre-existing 
knowledge on the sizing of semiconductor devices [6], inductors 
and transformers [7], and modelling of manufacturing processes 
[8].  

The transmission also plays a crucial role in determining the 
efficiency and performance of the electric powertrain. In [9],the 
transmission model calculates its losses for each speed and 
torque, and is calibrated with experiments. in [10], detailed 
equations to estimate the transmission losses are listed. 

Electric powertrains and their components are the subject of 
numerous research studies aimed at optimizing their 
performance. However, there is a limited amount of literature 
that explores the platform-based design for electric powertrains, 
which is a critical topic for the automotive industry as it can 
significantly reduce the development time and cost of 
powertrains by sharing common components across multiple 
vehicle applications. In [11], powertrain optimization methods 
are applied to demonstrate how cross-platform optimization can 
help the original equipment manufacturers (OEMs) create 
product strategies that are cost effective across a variety of 
vehicle classes. In [12], a design method able to consider 
multiple electric powertrain design problems and reduce the 
system costs by utilizing commonalities between the single 
designs is proposed. 

The benefits of platform-based powertrain optimization are 
not limited to the automotive industry alone. This strategy can 
also have positive effects on the environment and society as a 
whole. By reducing the development time and cost of 
powertrains, automakers can bring electric vehicles to market 
more quickly and at more affordable prices, making them more 
accessible to a larger segment of the population. 

This paper provides detailed models of electrical traction 
machines, power electronic converters, and mechanical 
transmission, which enable a detailed analysis of powertrain 
optimization. The proposed powertrain optimization 
methodology allows us to find the most suitable powertrain 
design for specific electromobility applications by utilizing the 
detailed models. Furthermore, the study investigates the 
advantages and limitations of the platform-based powertrain 
optimization by exploring the feasibility of having a powertrain 
platform for three different vehicle classes. 
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II. METHODOLOGY 

To perform the platform-based powertrain optimization, an 
electrical machine database containing a large number (100’s to 
1000’s) of EMs with different 2D geometries is prerequisite, 
where each machine is simulated under the same assumptions.  

Fig. 1 illustrates the platform-based powertrain optimization 
process.  One EM 2D geometry  is selected from the database as 
the input of optimization process. It can be scaled to generate 
new machines using three scaling factors [13]:  , which is the 
ratio between the active length of the scaled EM and the length 
of base motor in database; , the desired number of turns; and  , the ratio between the peak and nominal current. The 
optimizer will find the optimal machine length, number of 
winding turns and current rating for the EM, together with the 
designed inverter and transmission, to minimize the objective 
function  . The vehicle requirement are compared with the 
designed powertrain performance, and the one which cannot 
cover all the requirements is discarded. This result provides the 
optimal design for each vehicle. Once all EMs in the database 
are evaluated for all vehicle types, the 2D motor geometry that  
provides the lowest objective function  is selected as the best 
solution for the platform. Note that for each vehicle type the 
optimal platform design has the same 2D motor geometry but 
different length, number of turns and overloading factor. 

 
Fig. 1. Powertrain optimization methodology 

The optimization problem for the inner most loop can be 
formulated as expressed in (1), which is defined as Scenario 1, 
to find the optimal design for each vehicle.  

     ( , ) 

 = (,  , ) 

. :  > 0,     ∈          > 0,     ∈                              (1)            > 1,     ∈  () < 0    
Where   is the index of the EM 2D geometry from the 
database and   is the scaling factor vector.   represents all 
powertrain specific constraints such as performance and 
overloading requirements, gear ratio limitations, maximum 
allowed temperatures, etc.  

      The outer most loop of the optimization can be formulated 
as shown in (2), which is defined as Scenario 2, to find the 
optimal platform powertrain design. 

         () = ∑ [ ∙ {( , )}]               (2) 

Where   represents the intended yearly volumes of each 
vehicle type, and the number of vehicle types to optimize for is 
depicted by  . All constraints are evaluated for the different 
vehicles in the inner most loop. For scenario 2, the production 
volumes for many of the manufacturing steps are increased, in 
relation to the different vehicle volumes, to account for the 
benefits of economies of scale. Thus requiring a unique 
optimization run. 

III. POWERTRAIN COMPONENT MODELLING 

A. Electrical Machine 

In this work a V-shape Interior Permanent Magnet 
Synchronous Motor (VIPMSM) with hairpin windings is used  
as Fig. 2 presents a parametrized geometry of the EM. 

 
Fig. 2. Example of PMSM with parameterized geometry 

TABLE I.  EM DATABASE 

Parameter Values Unit 

 [80; 90; 100; 110; 120]  

 ⁄  [0.6; 0.65] - 

 [6; 8] - 

 [2; 3] - 

Relative slot size [0.9; 0.95; 1] - 

 [0.4; 0.45; 0.5] ( − )  

   [0.08; 0.1; 0.12] (2 ⁄ )  

Using the parameterized values listed in Table I, a database 
of 1080 different 2D EM geometries is generated with FEMM, 
which is an open-source finite element analysis tool [14]. 
Various parameters are modified to create the EM database, 
including the stator outer radius (), the ratio between rotor and 
stator outer radius ( ⁄ ), the number of poles ( ), the 
number of slots per pole and phase (), the ratio defining the slot 
size (relative slot size), the distance between v-magnet-slot edge 
and rotor inner radius (), the distance between the v-magnet-
slot edges of the neighbor pole magnets ( ). The default 
active length of EMs in the database is set to 150  , and 
number of serial turns is set to 1. All EMs in this paper is 
assumed to have a liquid cooled water jacket.  

After collecting data on torque, current, flux linkage, and 
flux density from FEMM, the EM losses and efficiency map can 
be derived through post-processing. This is accomplished using 
the maximum torque per ampere (MTPA) control algorithm, as 

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on May 24,2024 at 09:10:28 UTC from IEEE Xplore.  Restrictions apply. 



described in [13]. Fig. 3 displays the MTPA points represented 
by dots.  

 
Fig. 3. Torque and flux linkage contour lines in the [ , ] plane 

As discussed in the optimization methodology, the EM 
scaling is a method used to efficiently create new machines 
based on existing ones in the database while ensuring accuracy. 
During the scaling process, the thermal constraints should be 
satisfied. Then a lumped parameter thermal model based on the 
previous work in [13] is introduced, as shown in Fig. 4, to take 
the thermal performance into account.   

By utilizing this thermal model with the predefined thermal 
settings such as coolant temperature, heat transfer coefficient of 
the cooling system, and maximum allowed winding 
temperature, the nominal current of each scaled EM at nominal 
operating point, and the peak current can be estimated. 

 
Fig. 4. Lumped parameter thermal model for PMSM 

The EM cost is influenced by two primary factors: the cost 
of materials and the cost of the major manufacturing operations 
involved in generating and assembling the physical components 
of the machine. The materials used in constructing the machine 
are a significant determinant of its cost. However, the cost of 
manufacturing operations also plays an important factor. These 
operations, such as blanking, winding, and assembly, etc. 
require skilled labor and specialized equipment, which is highly 
dependent with production volumes. Fig. 5 presents the cost 
distribution for an EM with a production volume of 10 , as 
derived from the EM cost model developed in [8]. The figure 
illustrate both the material cost distribution and the cost 
distribution with manufacturing.  

Fig. 6 illustrates the relationship between the EM cost and 
the annual production volume. The marginal effect of the 
decrease in EM price gradually weakens as production volume 
increases. 

 
Fig. 5. Cost distribution for a PMSM with production volume of 10 

  
Fig. 6. EM cost vs yearly production volume   

B. Inverter 

The loss calculation for the inverter is based on scalable 
electro-thermal models of power modules [15]. For each 
machine, an iterative process calculates the minimum 
semiconductor chip size required by first calculating the losses 
at the most challenging operating point. The thermal resistance 
of the device is estimated based on the power module materials 
and the chip size together with assumptions of heat spreading 
and chip-chip interaction. The junction temperature is then 
calculated from the losses and thermal resistance. SiC-MOSFET 
is used in this paper and the power modules are assumed to be 
liquid cooled with a heat transfer coefficient of 8 /, and 
the temperature of the coolant is set to 65 °C.  

The scalable resistance, on-state voltage and switching loss 
models were created by extracting data from manufacturer 
datasheets of several power modules from same generation and 
with the same packaging. Linear coefficients were used to 
compensate the turn-on, turn-of and on-state resistance 
dependence on junction temperature. The inverter design 
process is shown in Fig. 7. 

 
Fig. 7. Flowchart of inverter design 
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The switching and conduction losses for the power modules 
can be estimated by (3) and (4).  

 = ,   
 1 + , −  

 (3)  

 =  1
8 +  ∙ cos()

3   ∙ Î 

             1 + , −                                  (4)     

In equation (3), the switching losses are estimated. The 
switching frequency is denoted as .  The operating 
temperature and blocking voltage are represented by  and  , 
respectively.   and  are the reference values at which the 
energy losses are defined in the datasheet.   and   are the 
temperature and voltage compensation constants. The energy 
losses during a switch event are represented by . 

The conduction losses are computed by (4).   is the 
modulation index, cos() is the power factor of the EM,  is 
the electrical resistance for the power modules, Î is the phase 
peak current of the EM. 

C. Transmission 

In this paper, a transmission model has been adapted based 
on the work in [16] that accurately determines the appropriate 
size for each of the components, including gears, shafts, and 
bearings. The model also calculates the corresponding loss and 
efficiency maps. The model is capable of sizing both single and 
multi-speed transmissions with parallel or transverse 
architectures.  

This paper also focuses on the method of improving the 
energy consumption via optimizing the final gear ratio [17], then 
the electric vehicle can work at more efficient operating points.  

For a single-speed transmission, given that the traction motor 
is able to deliver the required power, the gear ratio should be 
constrained as shown in (5), by the torque and speed 
requirements.       
                           

,
,  ≤  ≤  ,

,                       (5) 

From all the available gear ratios, the one that results in the 
lowest energy consumption is chosen as the input for the 
detailed transmission model. 

IV. CASE STUDY 

A. Electric Vehicle Specificaitons 

A total of 3 vehicle classes have been defined to investigate 
platform-based powertrain optimization. Each vehicle has its 
own specifications, which are from the industry partner, and are 
shown in Table II. They are all propelled by a single electric 
traction machine with a single-speed transmission to evaluate 
the vehicle energy consumption and electrical machine cost in 
different degrees of electrical machine commonality. 

TABLE II.  VEHICLE SPECIFICATIONS 

Parameter Class A Class B Class C 

Weight () 1280 1480 1850 

Front area () 2.11 2.20 2.36 

Drag Coefficient 0.32 0.31 0.267 

Rolling resistance 0.008 0.008 0.008 

Max speed (/ℎ) 180 180 180 

Acceleration 0-100kph () < 10 < 9 < 8 

Overtaking 80-120kph () < 6 < 4 < 3 

Gradeability  
7% @180 ℎ 
25% @40 ℎ 

According to the vehicle performance requirements in Table 
II, the required torque on wheel side is calculated, as shown in 
Fig. 8. These figures offer a clear understanding of the torque 
required to achieve the vehicle performance and the designed 
powertrain performance should cover all the operating points. 
The WLTP drive cycle is applied to evaluate the optimization 
results. 

 

  

 
Fig. 8. Vehicle requirement on wheel side for Class A, B and C 

B. Objective Function and Constraints 

For the presented case study, the relationship between EM 
and operational cost is to be explored. For this reason, the 
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objective function for the inner most loop () is defined as 
shown in (6), where the EM cost is denoted as   and the 
operating cost as . The weighting factor  determines the 
relative importance of the two objectives in (). Besides the 
performance requirements previously established, a minimum 
overloading time of 30s and a maximum gear ratio of 16 are set 
as optimization constraints as it can be seen in (6). 

( , ) = ( , ) ∙  +
                                                   ( , ) ∙ (1 − )           (6) 

                                         > 30 

 , < 16     
The operating cost  for each vehicle is estimated based 

on energy consumption over one year with an assumed annual 
mileage of 20,000 km and the electricity price of 0.3€/kWh.  

V. RESULTS 

In this section, the proposed methodology and models are 
applied in the optimization for the three vehicle classes.  

The objective function allows for exploring different 
weightings between the two objectives. As an example of results 
for a single application, Fig. 9 illustrates the optimization results 
for the Class C vehicle, where two weighting factors were 
applied to the objective function. Each circle on the graph 
represents the optimal powertrain configuration for a specific 
2D EM geometry. The results clearly demonstrate that when the 
EM cost is prioritized ( = 1), the optimizer tends to minimize 
the EM cost at the expense of operating cost. When  is set to 
0, a higher initial EM cost and  lower operating costs is achieved. 

 
Fig. 9.  Powertrain designs with different weigting factors for Class C 

The powertrain platform study is performed by optimizing 
the powertrain for each vehicle with the two scenarios. The 
yearly production volume for scenario 1 is set to 10  units/year 
per vehicle class. Figure 10 shows the results for the inner most 
optimization loop when  is evaluated at both 10  and 30  
units/year. The first set of results represent the optimal solution 
for scenario 1, with the optimal solution marked with star in the 
pareto front for each vehicle class. While the second set of 
results are used to compute  in order to calculate the optimal 
solution for scenario 2 as shown in Fig. 11.  

Since scenario 2 employs a shared 2D EM topology for all 
vehicles, it results in lower EM cost due to the larger economies 
of scale. However, the system efficiency is compromised, 
leading to higher operating costs compared with the results from 
scenario 1. Furthermore, as it should be expected, the optimal 
solution for scenario 2 does not lay in the pareto front for  
evaluated at 30  units/year, as shown in Fig. 10, as it is a 
compromised solution. The EM geometries for all applications 
are shown in Table Ш. 

 
Fig. 10. Optimization results for all vehicles in scenario 1 with different 
production volumes.  

 
Fig. 11. Optimization results for all vehicles in scenario 2.  

TABLE III.  EM GEOMETRIES WITH TWO SCENARIOS 

Scenario 1 Scenario 2 

Class A Class B Class C Class A&B&C 

    

Table Ⅳ shows the relation between the EM production 
volume and the cost of one EM from Class C. 
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TABLE IV.  EM COST VS EM YEARLY PRODUCTION VOLUME 

 
EM yearly production volume (Units) 

1k 10k 30k 100k 300k 

EM cost (€) 806 327 294 283 280 

With a limited EM production volume, the EM cost can be 
up to 2~3 times higher than that with higher volume. The EM 
cost decreases from 327€ to 294€ as production volumes 
increase from 10 to 30, which can also be seen in Fig. 10. 
With further production volume increases, there comes a point 
where the cost reduction of the EM is not significant despite the 
increase improved economies of scale. That being said, this does 
not includes the benefits of reduced development cost, which 
have a significant impact even at mid to high volumes. This 
aspect will be investigated in detail  in a future publication. 

To illustrate the design details, the optimal powertrain design 
for Class C with scenario 1 is shown in Table V. 

TABLE V.  POWERTRAIN DESIGN FOR CLASS C WITH SCENARIO 1 

EM 

 

 

Active length 120 

Num. of turns 4 

Num. of winding layers 8 

Num. of parallel paths 4 

Nominal torque/power 240/186 

Max torque/power 282/209 

Transmission 

 

Gear ratio 10.97 

Num. of teeth for  
gear stage 1 

32/113 

Num. of teeth for  
gear stage 2 

37/115 

Inverter 

 

Power modules SiC 

Num. of chips 5 

Single chip area  54  

 

VI. CONCLUSIONS AND FUTURE WORK 

The results show that the detailed models and optimization 
methodology presented can be used to design more efficient and 
cost-effective powertrains for specific applications with enough 
details. The study on powertrain platform across different 
vehicle classes also provide valuable insights into the potential 
benefits of platform-based powertrain design in the 
electromobility industry. Platform-based design allows for the 
sharing of common components across multiple vehicle 
applications, resulting in reduced cost, especially for low 
volume applications. Additionally, adopting platform 
approaches allows to reduce development cost, validation effort 
and time to market. However, the study also highlights the 
challenges and limitations associated with the adoption of a 
platform strategy, such as compromises in powertrain 
efficiency, as each vehicle class has its own unique 
requirements. When dealing with applications with high 

production volume, the marginal benefits derived from 
economies of scale tend to decline. A methodology like the one 
presented in this paper allows to accurately depict at which 
volumes the benefits of developing powertrain platforms 
outweight the drawbacks and viceversa, which is essential for 
informed decision making around powertrain strategy. 

To make this study more comprehensive, the detailed 
transmission and inverter cost models are required in the future. 
It is also necessary to explore deeper into objectives that are 
challenging to quantify, such as the powertrain development 
time and the R&D cost. 
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