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Abstract

Voltage instability is a phenomenon that limits the operation and the transmission
capacity of a power system. An operation state close to the security limits enables a
cost-effective utilization of the system but it could also make the system more vul-
nerable to disturbances. The transition towards a more sustainable energy system,
with a growing share of renewable generation, will increase the complexity in volt-
age stability assessment and cause significant planning and operational challenges
for transmission system operators.

The overall aim of this thesis is to develop a real-time voltage stability assessment
tool which can be used to assist transmission system operators in monitoring volt-
age security limits and to provide early warnings of possible voltage instability. The
thesis first analyzes the difference between static and dynamic voltage security mar-
gins, both theoretically and numerically. The results of the analysis show that power
systems with a high share of loads with fast restoration dynamics, such as induction
motors or power electronic controlled loads, may cause conventional static methods
to assess the voltage security margins to become unreliable. Methods relying on a
dynamic assessment of the security margin are in these circumstances more reliable.

However, dynamic assessment of voltage security margins is computationally chal-
lenging and can in most cases not be estimated in the time frame required by system
operators in critical situations. To overcome this challenge, a machine learning-based
method for fast and robust computing of the dynamic voltage security margin is pro-
posed and tested in this thesis. The method, based on artificial neural networks,
can provide real-time estimations of voltage security margins, which are then vali-
dated using a search algorithm and actual time-domain simulations. The two-step
approach is proposed to mitigate any inconsistency issues associated with neural
networks under new or unseen operating conditions.

Finally, a new method for voltage instability prediction is developed. The method
is proposed to be used as an online tool for system operators to predict the system’s
near-future stability condition given the current operating state. The method uses
a more advanced neural network based on long-short term memory. The results
from case studies using the Nordic 32 test system show good performance and the
network can accurately, within only a few seconds, predict voltage instability events
in almost all test cases.

Keywords: Dynamic voltage security margin, voltage stability, security assessment,
machine learning, neural networks, voltage instability prediction.
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Chapter 1

Introduction

This chapter provides a background and a problem overview of the thesis, along
with an overview of previous work. Furthermore, the aim and the contributions are
presented together with a summary of the publications on which the thesis is based
upon

1.1 Background

The transition towards a more sustainable energy system, with a growing share
of renewable generation, increases the complexity in operating and controlling an
electric power system. Globally, both wind and solar power are growing fast, a trend
that is likely to continue given that renewable energy sources are now becoming
the lowest-cost source of new power generation in most parts of the world [1, 2].
Sweden has seen a similar development, where the installed wind power capacity
increased from 241 MW to 8 984 MW between the years of 2000 and 2019 [3, 4].
Simultaneously, electric power generated from conventional fossil-fueled plants needs
to be decommissioned at a rapid rate to reduce carbon emissions to the atmosphere.
Sweden lacks significant generation from fossil-fueled plants, and have instead relied
on nuclear power for a large share of its base power. However, due to the lack of
economic profitability, nuclear power is now gradually being decommissioned. By
the end of 2019, reactor 2 of the Swedish nuclear power station Ringhals was shut
down, and in 2020 a second reactor is planned to be decommissioned [5]. Out of
originally twelve reactors, then only six will remain in operation in 2021, with a
total rated capacity of about 6 900 MW.

Although a larger share of renewable energy sources in the power system is desir-
able from a sustainability perspective, the intermittent nature of these may cause
significant planning and operational challenges. In particular, maintaining what is
known as the power balance - that the generated power matches the load demand
at every time instant - will become increasingly challenging in a future with a larger
share of renewable generation [5]. In Sweden, the power balance is generally main-
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1. Introduction

tained by regulating the output of hydropower stations. In cases of negative power
balance, and when the balancing capacity of the hydropower is not sufficient, elec-
tric power is often imported from neighboring countries. Market integration and
electricity connections linking Sweden to Europe also allows ancillary services to be
supported when required. In Europe, a recent example is the development of the
joint automatic frequency restoration reserve, known as the European Platform for
the International Coordination of the Automatic frequency restoration process and
Stable System Operation [6].

To ensure that the balancing capacity of hydropower stations can be utilized to its
full extent, or that sufficient power that can be imported from neighboring countries,
the importance of sufficient transmission capacity in the power system is expected
increase in the future [7]. An increased transmission capacity also allows energy
to be generated where it is most economically efficient to do so and sets the limit
on how much power can be transmitted through the transmission lines. Electric
power systems are generally operated according to the N -1 contingency criterion,
meaning that the system should be able to withstand the loss of any single system
component, such as generation or transmission capacity, and still remain stable.
A system that satisfies this criterion is said to be secure, and a system’s transfer
capacity is computed to always ensure that this criterion is fulfilled [5].

There are several stability-related phenomena that set the limit for the operation of
the power systems [8]. This thesis deals with voltage stability, which refers to the
capability of a system to maintain system voltages following a disturbance. Voltage
stability is especially an issue in power systems where generation and loads are
geographically separated over large distances; Sweden being a typical example. A
voltage collapse is referring to a sequence of events accompanying voltage instability
that leads to abnormally low voltages or a blackout in a significant part of a power
system [8]. Although voltage collapses occur relatively seldom, they are related to
extremely high costs to society and system operators need to continuously operate
their systems to minimize the risk of such events.

1.2 Problem overview

While an operation close to the security limits enables a cost-effective utilization of
the system, it may also make it more vulnerable to disturbances. Consequently, there
exists a balance between a system that is operated efficiently and one that is operated
securely. To always ensure that the N -1 contingency criterion is fulfilled, system
operators rely on continuous estimations of the security margin for the system [9].
An accurate and fast estimation of these security margins will allow system operators
to operate their systems with the confidence that the system can withstand credible
disturbances.

In the case of more severe events, such as the occurrence of simultaneous multiple
disturbances, system operators have to rely on system protection schemes (SPS) to
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1. Introduction

control the system back to a stable state [10]. Following such severe events, system
operators need to identify whether the current system operating condition is stable,
or if it is drifting towards instability. The SPS can act on signals given by voltage
instability detection (VID) methods, where the onset of instability, rather than its
consequences, is aimed to be detected [10]. Due to equipment in electric power
systems, such as load tap changing transformers (LTCs), overexcitation limiters
(OELs), and other load restoration dynamics, the time frame of a typical voltage
collapse can range from a couple of seconds up to even several minutes. In the case
of a possible emergency event, the ability for system operators to perform VID and
act quickly and with the correct control measures is thus imperative.

To provide system operators with real-time estimates of both the security margins
and to provide detection of instability, static assessment methods are generally used.
The voltage security margin (VSM) is estimated by system operators to evaluate the
loadability margin of a post-contingency configuration of the system [11]. The VSM
is generally estimated by static assessments of the system where the stability limit
up to the system collapse point is estimated [12,13]. For VID, monitoring the system
voltages is the most simple method available to system operators. However, due to
the reactive power support of generators and other voltage control devices in the
system, the system voltages can remain at near-nominal levels a relatively long time
following a disturbance. Fast system degradation and drops in system voltages may
then be triggered by, for instance, the activation of field current limiters by OELs.
The remaining time before a development of a potential voltage collapse may then
be too short for system operators to initiate the required SPS. Other static methods
for VID suffer the same dilemma; that the system degradation needs to be relatively
well-developed for the VID methods to actually be able to detect instability.

Electric power systems are also becoming increasingly complex, with numerous dy-
namic components such as nonlinear loads, converter-based generators, and other
power electronic devices found in, for instance, HVDC and flexible AC transmission
systems [14, 15]. These components have in common that their dynamic response
following a disturbance in the system is significantly faster when compared to more
conventional equipment. Depending on tuning and specified grid codes, the faster
dynamic response is often beneficial for the system stability, where, for instance, the
fast reactive power response of converter-based wind turbines or HVDC can help to
stabilize the system following a disturbance. However, other components, such as
power electronic loads, may inhibit characteristics that may cause instability events
to develop faster, causing existing monitoring and emergency systems to act too
slowly. The dynamic response following a contingency cannot be captured using
static assessments, and studies have indicated that these might be insufficient when
estimating the actual security margin [11, 16]. Faster dynamics will also result in
faster voltage instability events, increasing the need for faster methods for voltage
instability detection.

Most power systems are monitored through supervisory control and data acquisi-
tion (SCADA) systems, in which loosely synchronized scalar measurements with
a refresh-rate of around two to four seconds taken at remote terminal units are
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1. Introduction

processed by a state estimator to develop the most probable state of the power sys-
tem [17]. Phasor measurement units (PMUs) are highly accurate measuring devices,
allowing time-synchronized real-time phasor measurements of electrical quantities in
the power system at a much higher refresh-rate than that of SCADA. If the system
is fully observable by time-synchronized phasor measurements, the measurements
can be filtered through a linear state estimator, allowing significantly more frequent
estimates of the system state [18]. With sufficient deployment, PMUs could help
in the decision making process in real-time power system operation and control by
visualizing the system condition and stability margins in real-time.

The complexity of the power system requires system operators to often rely on sim-
plified static models of how the system behaves during various operating conditions
and with respect to disturbances. There are generally more advanced models avail-
able, but even with recent progress in high-performance computing, these methods
are not readily available for use in real-time monitoring of a large power system.
To overcome this issue, various data-driven methods and machine learning (ML)
methods have been proposed in the literature. The main advantage of ML methods
is that high-cost computations can be performed in an off-line setting. Once a ML
algorithm is trained, it can almost instantaneously provide estimations and warnings
to operators that otherwise would require time-consuming computations. However,
despite years of research, examples where ML methods have been practically applied
in system operators’ monitoring and control systems are, to the author’s best knowl-
edge, very few. These methods still suffer from robustness issues and uncertainty
when handling operating conditions not included in the training of the algorithms.
Blackouts and other major failures are related to extremely high costs, and from a
system operator’s view, an inferior method that always works is generally preferred
to a superior method that in some instances does not.

Based on the problem overview and the motivation of the thesis, the following
research questions have been identified and will be examined within this thesis:

• Research question 1: How will the transition towards a higher penetra-
tion converter-based renewable generation and load in the power system affect
available methods for security margin assessment?

• Research question 2: How can the current methods for assessment of se-
curity margins be improved, taking into account assessment speed, estimation
accuracy, and robustness?

• Research question 3: What are the requirements for future voltage insta-
bility detection methods? How can they be developed to be both sufficiently
advanced to capture the intricate dynamics during a voltage collapse, while at
the same time be fast enough to be used in real-time?

• Research question 4: In the case of data-driven methods, what are the
main practical aspects to consider to mitigate inconsistency problems and to
increase the robustness of the methods?
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1. Introduction

In the following section, an overview of previous work related to the topics and the
developed research questions in this thesis is presented.

1.3 Previous work

To ensure that a power system can handle the dynamic event following a distur-
bance, system operators often use an approach called dynamic security assessment
(DSA). In DSA, time-domain analysis is often used to test the power system’s dy-
namic response after a set of contingencies to ensure its ability to reach a stable
post-disturbance operating point [9]. Assessment of dynamic stability is a complex
task and to overcome this issue, various machine learning (ML) methods have been
proposed. Examples of DSA methods based on ML are found in [15, 19–23], where
mainly various decision tree (DT) or neural network (NN) methods are utilized.

In DSA, system operators are only provided with information regarding whether the
current operating point is dynamically secure. An alternative measure of the margin
to the most stressed point where the system can remain dynamically secure follow-
ing a disturbance is the dynamic voltage security margin (DVSM). The DVSM,
also referred to as the secure operating limit, is the margin to the most stressed
pre-contingency operating point that can withstand a set of credible contingen-
cies [11, 14]. Due to practical difficulties in estimating the DVSM, it has received
comparatively little interest in the literature. DVSM estimation requires several
time-domain simulations to trace the security limit for a set of different contingen-
cies, which is not feasible to perform in the time frame needed by system operators.
In [11], an attempt to reduce the computational cost in estimating the DVSM was
developed based on using quasi-steady-state (QSS) simulations. The method was
further developed in [24], where a combination of QSS and time-domain simulations
was proposed to include the impact of short-term effects during the transient state
following a disturbance. Although this approach reduces the computational effort
compared to a full time-domain simulation, it may still prove too slow for some real-
time applications. In [25–28], different ML approaches based on NNs were proposed
to allow real-time estimation of the DVSM.

Following more severe events and disturbances, system operators need to identify
whether the current system state is stable, or if it is drifting towards instability.
There has been significant research involving different VID methods, where the
complexity and the scope of the developed methods vary significantly [10]. The
drawback of many developed VID methods is that they provide a late indication of
instability, which reduces the available time system operators have to control the
system back into stable operation and increases the risk of a voltage collapse. An
alternative approach is voltage instability prediction (VIP), where the future state of
the system is predicted using information and measurements gathered in the (short)
time left following a voltage instability phenomenon.

A method for VIP based on ML was first proposed in [19], where a DT was trained
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1. Introduction

on a generated database consisting of the intermediate, short-term equilibrium that
follows a disturbance. This post-contingency state, where the majority of the elec-
tromechanical transients have died out, was referred to as the "just after disturbance"
(JAD) state. Extensions of the method utilizing phasor measurements have later
been proposed in [29–31], where the performance of different attributes or input
data have been tested. A method based on training a NN to online monitor voltage
security was proposed in [32]. An attempt to incorporate some time-related fea-
tures to improve the performance in VIP was presented in [33], where a temporal
decision tree (TDT) approach was proposed, where some time-related features were
included to improve the performance in VIP. The TDT method, further discussed
in [34] and [35], could incorporate some time-related variables, such as the difference
between two measurements for a specific value of elapsed time (∆t).

1.4 Aim of the thesis

The aim of this thesis is to develop a new real-time voltage stability assessment tool
(RVSAT) that can support system operators and allow more efficient utilization
of the transmission grid. This is achieved partly by developing methods that can
provide better knowledge of the actual security margins in the systems, which would
allow the transmission reliability margins in the system to be reduced. The thesis
also aims at developing better methods to detect and assess system conditions and
disturbances that might cause the system to become unstable. Fast detection of
voltage instability reduces the risks and the related costs of controlling the system
back into stable operation, and also allows system operators to operate their systems
with higher confidence that instability can be detected quickly.

1.5 Main contributions

The main contributions of this thesis are the following.

1. A survey of current methods in VSM estimation and for VID is performed.
Furthermore, the principles of the DVSM and the differences to the static VSM
are illustrated using a concept called transient P -V curves to allow better
interpretation of the methods. The circumstances when a dynamic security
margin is preferred to a static margin are established and discussed.

2. A method for fast and robust computing of the DVSM is proposed and tested.
The method is based on using ML to support the estimation of the DVSM,
which otherwise is too time-consuming to perform in real-time. To mitigate in-
consistency issues associated with ML methods under new or unseen operating
conditions, a method to quickly validate the estimated results is developed.

3. A method for VIP is developed using a recurrent neural network with long
short-term memory. This specific design of the network can utilize previous
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1. Introduction

measurements and information, such as the trend of bus voltage magnitudes,
tap changes, or fault locations, to improve the accuracy for VIP. The perfor-
mance of the method is compared to other structures of neural networks where
the performance of the sequence-based method is evaluated.

4. A new training approach of the VIP algorithm is developed to provide system
operators with an online assessment tool. As time progresses after a voltage
instability event, the network is capable of incorporating new observations and
continuously updating the assessment. The method will also allow system op-
erators to pinpoint where the weakest areas in the system are located, allowing
local and more cost-effective control measures.

5. A methodology for including consecutive contingencies (N -1-1) into the train-
ing data for the VIP algorithm is presented. Furthermore, the ability of the
developed VIP method to also generalize under N -1-1 contingencies is ex-
amined. Such ability is especially valuable in overcoming the combinatorial
increase of complexity in training.

1.6 List of publications

Following is a list of publications included in the thesis.

Paper I H. Hagmar, R. Eriksson, L. A. Tuan, "Fast Dynamic Voltage Security Mar-
gin Estimation: Concepts and Development," accepted to IET Smart Grids
Special Issue: Machine Learning in Power Systems , 2020.

Paper II H. Hagmar, L. Tong, R. Eriksson, L. A. Tuan, "Voltage Instability Pre-
diction Using a Deep Recurrent Neural Network," submitted to Transactions
on Power Systems, 2020.

Paper III H. Hagmar, L. A. Tuan, O. Carlson, R. Eriksson, "On-line Voltage Insta-
bility Prediction using an Artificial Neural Network," in Proc. 2019 PowerTech
Milan, Milan, Italy, 2019.

Paper IV H. Hagmar, L. A. Tuan, O. Carlson, R. Eriksson, "A Survey of Voltage
Stability Indicators Based on Local Synchronized Phasor Measurements," in
Proc. 2018 North American Power Symposium (NAPS), Fargo, ND, 2018.

Additional paper produced in project but not included in the thesis:

H. Hagmar, L. A. Tuan, O. Carlson, R. Eriksson, "Integration Aspects of Full Con-
verter Wind Turbines and the Impact on Long-term Voltage Stability," in Proc. 2019
IEEE Power and Energy Society General Meeting, Atlanta, GA, USA, 2019.
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1. Introduction

1.7 Thesis outline

The thesis is organized as follows:

Chapter 2 develops the definitions used in the rest of the thesis and also provides
an overview of current practices in voltage security and stability assessment.

Chapter 3 provides a theoretical background on the concepts of ML and neural
networks. The concepts of recurrent neural networks with long-short term
memory is introduced.

Chapter 4 introduces the overall functionality of the proposed real-time voltage
stability assessment tool. Furthermore, the test system used in evaluating
the developed RVSAT is presented and its general characteristics are briefly
discussed.

Chapter 5 presents both a theoretical and a numerical comparisons of the static
and dynamic voltage security margins under various load configurations.

Chapter 6 introduces the concept of dynamic voltage security margin and dis-
cusses and illustrates the difference to conventional VSM using transient P -V
curves. A method for fast estimation of the DVSM is then proposed and
tested.

Chapter 7 presents a voltage instability prediction method based on a recurrent
neural network using long-short term memory. The method allows system
operators to continuously assess and predict whether the present system state
is stable or will evolve into an alert or an emergency state in the near future.

Chapter 8 highlights the key conclusions of the thesis and provides ideas for future
research.

All figures included in this thesis have been created by the author.
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Chapter 2

Voltage stability and security
assessment methods

This chapter describes the definitions and criteria with respect to voltage stability
that are used in this thesis. Furthermore, the general drivers for voltage instability
are discussed along with a presentation of the current practices in voltage stability
and security assessment. A brief overview of the different methods used in voltage
instability detection is presented. Parts of the chapter are based on the summary
and results established in Paper IV.

2.1 Definition and classification

Power system stability is generally classified by the most common system variables
in which instability can be observed, namely; voltage stability, rotor angle stability,
and frequency stability. According to a definition by the IEEE and CIGRE Joint
Task Force, voltage stability specifically refers to:

"...the ability of a power system to maintain steady voltages at all buses in the
system after being subjected to a disturbance from a given initial operating

condition. It depends on the ability to maintain/restore equilibrium between load
demand and load supply from the power system." [36].

Voltage instability in a power system may lead to loss of loads or disconnection of
other components such as tripping of transmission lines or generators due to too low
voltage levels. The concept of voltage collapse is generally referred to as a sudden
event, often initiated by a larger disturbance or by a sequence of events, leading to
blackout or abnormally low voltages in the whole, or larger parts, of a power system.
Historic events of voltage collapses are relatively few, but the related costs to society
are extremely high [9].
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2. Voltage stability and security assessment methods

The voltage stability phenomenon is complex and often requires a full network rep-
resentation for its analysis [36]. Reactive power plays an important role in voltage
stability, and voltage stability problems are often related to the incapability of the
system to provide sufficient reactive power to keep system voltages at nominal lev-
els. However, the main driver for voltage instability in power systems are the loads
and the load restoration that follows a disturbance [9]. Historically, the majority of
all voltage instability incidents experienced so far have resulted from larger distur-
bances, such as the loss of generation or transmission capacity. Following such an
event, generation is redirected and the remaining transmission lines have to carry a
larger current, causing increased active and reactive power losses and voltage drops.
The reduced system voltages initially affect voltage-dependent loads, which are then
restored by the action of, for example, LTCs, distribution voltage regulators, action
of motor slip adjustments, or thermostatic load restoration. The restored loads will
further increase the active and reactive power flow through a mainly inductive trans-
mission system, which increases the reactive power losses and further deteriorates
the system voltages. The system may eventually collapse when the load dynam-
ics attempt to restore the loads beyond the capability of the generators and the
transmission network.

The above-mentioned example is generally referred to as a large-disturbance voltage
stability event. Less common are voltage instability caused by small-disturbances,
such as incremental changes in system load. Since system operators continuously
ensure that sufficient margins are kept to fulfil the N -1 contingency criterion, small-
disturbance events are very seldom the sole cause of voltage instability. However, the
methodology used in the small-disturbance analysis is often valuable in the analysis
of the voltage security margins, which is further discussed in Section 5.1.4.

2.2 Voltage stability assessment

Voltage stability assessment (VSA) refers to the daily operational and planning
activities of system operators to ensure a secure and stable operation of the power
system. The main goal is to continuously ensure a secure normal (operating) state
in the system. A system is said to be operated in a normal state if both the load
constraints and the operating constraints are satisfied [9]. The load constraints
ensure that the load demand is met by the generation in the system, while the
operating constraints ensure that minimum or maximum limits in terms of variables
such as line currents and bus voltages are satisfied.

In the event of a disturbance in the system, the system may either settle to (i) a (new)
secure operating state, (ii) an (unsecure) alert state, (iii) or end up in an emergency
state. Ensuring that a power system can be operated securely with respect to all
possible disturbances would not be feasible. In practice, the power system security
is assessed with respect to a set of credible disturbances, generally referred to as
contingencies. Power systems are almost exclusively operated according to the N -1
contingency criterion, meaning that the system should be able to withstand the loss
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of any single component, such as transmission or generation capacity, without the
system entering an emergency state. A system capable to handle such an event
without entering an emergency state is said to be secure. A system that cannot
handle such an event without entering an emergency state is said to be operated in
an unsecure state.

With reference to dynamical system theory, an operating state (or equilibrium) x∗

is called stable if all solutions with an initial condition close to x∗ remain near x∗

for all time [9]. An equilibrium that is not stable is called unstable. Thus, a system
can be stable at its current operating state, while at the same time not fulfilling the
security criterion of handling a larger disturbance and still maintaining stability.
An unstable system can be exemplified by a power system drifting towards voltage
instability, driven by the action of load restoration. It should be noted that security
and stability are sometimes used interchangeably in the literature. For instance,
large-disturbance stability is in some settings defined as the same as a security. For
the remaining part of the thesis, the above former stated definitions will be adopted.

The different operating states are illustrated in Fig. 2.1 and in Fig. 2.2, where the
state space of a power system is reduced and illustrated in only two dimensions.
In Fig. 2.1, the system is operated in the secure region. A disturbance causes
the system state to transition to the unsecure region. Here, although possibly not
meeting all the load constraints, the system is still stable. The system can then
be transferred back to the secure region through restorative control actions and
sufficient remedial actions. Alternatively, in Fig. 2.2, the system is operated in an
unsecure state. Following a disturbance, the system becomes unstable and enters
an emergency state, and without sufficiently fast counteractions, a larger system
collapse may be imminent.

Unstable region

Secure region

Unsecure region

Secure (stable) state

Unsecure (stable) state

Emergency (unstable) state

Figure 2.1: An example of a normal operating state, followed by a disturbance.
Through restorative control, the system operating state is restored to normal.
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Unstable region

Unsecure region

Secure region

Secure (stable) state

Unsecure (stable) state

Emergency (unstable) state

Figure 2.2: An example of an unsecure operating state, followed by a disturbance.
The system state ends up in an emergency state, and without sufficient emergency
control actions, the system will collapse.

Generally, VSA can be divided into two different but complementary lines of defense
used to avoid voltage instability: preventive and emergency. The preventive methods
are mainly used during normal operation to ensure that the power system is operated
securely according to the N -1 contingency criterion. In the event of more severe
incidents or multiple disturbances, the emergency applications of VSA are required.
The aim of these methods is to perform VID, allowing system operators to identify
imminent voltage instability and trigger fast remedial actions. In the following
sections, the main practices in these two applications of VSA are presented.

2.2.1 Security and security margin assessment

Security assessment involves assessing a power system’s ability to undergo distur-
bances for a given operating point. The level of accuracy in the assessments vary in
detail, where simpler methods are based on static assessment methods and assessing
the post-contingency long-term equilibrium [9]. A static load flow assessment of a
power system will have no solution if there is an absence of a post-contingency long-
term equilibrium, which provides a simple way to check whether an equilibrium of
the system exists. However, this simple approach suffers from several drawbacks.
An absence of a post-contingency long-term equilibrium may also be the result of
purely numerical problems that are not related to voltage instability. Other draw-
backs include the lack of information regarding the nature and the location of the
problem [9].

To overcome these issues, and to also ensure that a power system can handle the
dynamic event following a large disturbance, system operators often use an approach

12



2. Voltage stability and security assessment methods

called dynamic security assessment (DSA). DSA refers to the analysis to determine
whether or not a power system can meet security and reliability criteria in both
transient and steady-state frames [37]. Commonly, time-domain analysis is used to
test the power system’s dynamic response for a range of different contingencies [15].
In general, DSA includes assessing not only voltage stability, but also any criteria
such as thermal overloading, transient stability, or frequency stability.

More than just ensuring that the current operating condition is secure, the pre-
ventive assessments should also provide information to system operators with the
margin to instability. Security margins are related to system stress, generally in
terms of an increased transfer of active power. The security margins are also char-
acterized by the direction of system stress in the parameter space by load increases
and generation scheduling of various buses [9]. The voltage security margin (VSM),
also referred to as the post-contingency loadability limit (PCLL), can be evaluated
by estimating the loadability of a post-contingency operating point. The PCLL
is commonly estimated by static assessments of the system, where parameterized
continuation methods, referred to as continuation power flow (CPF), are commonly
used to trace the stability limit up to the system collapse point [12,13].

An alternative approach to estimate the security margin is by computing what is
generally denoted as the secure operating limit (SOL). The SOL provides the margin
to the most stressed pre-contingency operating point that can still withstand a set
of credible contingencies [11, 14]. However, computing the transition from a pre-
contingency operating point to a post-contingency operating point is numerically
difficult using static assessments when the system is close to the system collapse
point. Thus, the SOL requires either time-domain simulations or QSS estimations
to simulate the dynamic response following a disturbance.

The SOL provides a security margin with respect to not only voltage instability,
but also other stability related phenomena such as rotor angle stability or inter-area
oscillations. In the remaining part of this thesis, which specifically concerns the
assessment of voltage stability, the more specific term of dynamic voltage security
margin (DVSM) will be adopted. An additional distinction between the SOL and
the DVSM is that in this thesis, the DVSM is always assumed to be estimated using
full time-domain simulations, whereas the SOL can also be computed using QSS
simulations, or by combinations of both approaches.

The security margins are used to compute the transfer capacities in a power system,
which sets the limit for how much power can be transmitted through the system.
The different margins and capacities are illustrated in Fig. 2.3 with the following
definitions of the notations [38]:

• Total transfer capacity (TTC) is the maximum transmission of active
power between different areas/subsystems which is permitted with respect to
a given security criterion (most commonly, the N -1 criterion).

• Net transfer capacity (NTC) is defined as: NTC = TTC - TRM and is
the maximum exchange possible between two areas when taking into account
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Total Transfer Capacity

Available transfer
capacity

Transmission reliability margin

Net transfer
capacity

Time

Power
Transfer

Figure 2.3: Different measures of transfer capacities and reliability margins under
changing operating conditions.

the uncertainties in the TTC estimation.

• Transmission reliability margin (TRM) is the security margin that takes
into account the uncertainties on the computed TTC values. The TRM is in
some cases arbitrary determined, but is generally based on [38]:

1. Unintended deviations of physical flows during operation due to the phys-
ical functioning of load-frequency regulation.

2. Emergency exchanges between system operators to cope with unexpected
unbalanced situations in real-time.

3. Inaccuracies, e. g. in data collection, models, and measurements.

• Available transmission capacity (ATC) is the maximum incremental trans-
fer capacity possible between two parts of a power system without violating
the security margins.

The ability to accurately assess and compute the transfer capacities and the related
security margins is of very high importance to a system operator. Different meth-
ods for estimating the security margins in a power system, as well as comparisons
between static and dynamic estimation approaches, are presented in Chapter 5.

2.2.2 Voltage instability detection (VID)

The previously described methods fall under the category of preventive VSA meth-
ods. In the case of more severe incidents, such as the occurrence multiple simul-
taneous contingencies, or in the event that the preventive methods have not been
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Methods for voltage instability detection

Local VIDs Wide-area VIDs

Thévenin
equivalent
matching Reactive

reserves
monitoring

Thevenin
Equivalent
Multiport

Sensitivities with
OEL anticipation

LIVES & New
LIVES

Line indices

Machine
learning-based

VIP
(DTs, NNs, etc)

Figure 2.5: An overview of different types of methods aimed for VID.

2.3 An overview of VID methods

The aim of VID methods is to as fast as possible detect, or even predict, the onset of
voltage instability. Numerous different methods have been proposed in the literature
where the complexity and the requirements on the available measurement infrastruc-
ture vary significantly. The methods may also significantly differ in the accuracy
and speed of the detection, as well as robustness to errors and other functionality.
Available methods for VID can be divided into two different main categories:

1. VID methods based on local measurements: A VID method is in this thesis
defined to be local if it relies on measurements from only two or fewer buses.
Thus, those VID methods where measurements are required on both sides
of, for instance, a transmission corridor, are also considered to be local VID
methods.

2. VID methods based on the observability of the whole region: These methods are
generally more accurate than the VSIs based on local measurements. However,
as the name indicates, they require full or close to full observability of the
monitored region and the measurements used in these models should preferably
be filtered through a state estimator causing increased computation time and
complexity.

The following section is a brief overview of the most prominent methods for VID. The
number of different methods for VID is vast and the overview here is not meant to
be exhaustive but is rather intended to provide an overview of the available methods
and their advantages and disadvantages. More thorough overviews and comparisons
for different types of VID methods can be found in [10,39,40] and in paper IV.
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2.3.1 Thévenin equivalent matching

VID methods based on Thévenin equivalent (TE) matching use the TE impedance
as an indicator of the margin to voltage instability [41]. Considering the simple two-
bus system in Fig. 2.6, it can be shown that the maximum transferable apparent
power in the system occurs when

|Zth| = |ZL| (2.1)

where Zth is TE impedance, and ZL is the complex load impedance. The relationship
between the TE equivalent impedance and the other system parameters may be
stated as:

Eth = V L + Zth · I (2.2)

where Eth is the TE voltage, and V L and I the load voltage and current, respectively.
Using the relationship in (2.2), the values of Zth can be estimated. The real and
imaginary values of Eth and Zth in (2.2) results in four unknowns, requiring phasor
measurements to be taken at two or more times to solve for the unknown parameters.
By tracking and comparing the TE impedance and the load impedance, the system
operator can assess the load margin to instability, for each bus in the system the
index is computed for. An indication of instability occurs when the load impedance
becomes lower than the TE impedance. It should be noted that this margin is not
the same as the VSM or the DVSM presented in Section 5, as it only provides a
margin to instability in the system with respect to a theoretic load increase, and not
an N -1 security margin.

In [42], an improved method for TE impedance matching was proposed which could
anticipate the activation of OELs to increase the speed of the VID method. However,
a clear drawback of the TE matching methods is that they cannot incorporate and
foresee the load restoration that follows after a disturbance in the system, which is
often the main driver for instability. Studies have also shown that the TE matching
methods have problems to predict voltage instability when applied to multi-load
power systems [43].

PL, QL

Zth=Rth+jXth

Eth=Eth∠0° VL=VL∠δ°

I

ZL

Figure 2.6: A Two-bus Thévenin Equivalent Circuit
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2.3.2 Line VID methods

Line VID methods are based on measurements being available on both sides of a two-
port transmission line. The number of different line VID methods is vast, although
many are based on the same concepts. Over time, several line VID methods based
on the concept of maximal transferable power have been developed. These are
similar to the TE-based methods for the bus VSIs, with the difference being that
measurements are required in each end of a transmission line. An example of an
early developed line VID was the transmission path stability index in [44]. Here, the
maximum power transfer occurs when the voltage drop equals the load-side voltage,
according to:

TPSI =
Vs

2
− (Vs − Vr cos δ) (2.3)

where Vs and Vr indicates the sending and receiving end voltage, and δ is the voltage
angle difference between the two nodes. Other line VSIs based on similar concepts
are the voltage collapse proximity indicators in [45], where four indicators are de-
veloped, based on the maximum transferable power and the maximum possible line
losses that may occur over a transmission line.

Other formulations of line VID methods include methods that are based on solu-
tions to the classical voltage-power equation for a two-bus system with negligible
resistance, previously presented in (5.1). It can be shown that the maximum power
transfer occurs when the value of the inner square root in (5.1) is zero. A line in-
dex called Lmn based on this formulation is presented in [46]. The index can be
formulated as:

4XQr

[Vs sin(θ − δ]2
= Lmn ≤ 1.0 (2.4)

where θ is the impedance angle and X is the line reactance. Instability is indicated
whenever the stability index Lmn exceeds a value of 1.

2.3.3 LIVES and new LIVES

In [47, 48], a method called local identification of voltage emergency situations
(LIVES) is introduced and tested. The LIVES stability criterion is based on moni-
toring the change in the secondary voltage after at tap decrease on the primary side
(∆r < 0) of a LTC transformer, which simplified may be stated as:

∆V2

∆r
< 0 (2.5)

where ∆V2 is the change in the secondary voltage. Thus, if a tap decrease leads
to a negative change in ∆V2, this indicates an unstable condition. Further, the
criterion indirectly takes into account the effect of other taps acting in the system
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as it can observe the net effect of various LTCs over a cycle of tap operations.
In [49], this concept is developed further by monitoring the stability condition of
(2.5), solely from the transformer bus, by assuming that primary voltage and current
measurements are available. The decreasing tap change is measured indirectly as
a conductance increase seen from the primary side, whilst the secondary voltage is
indirectly monitored as an increase of consumed active power, P . The new index,
denoted as the New LIVES Index (NLI) is formulated as:

NLI =
∆P

∆G1

> 0 (2.6)

where

G1 = Re{I1/V 1}

Simulations show promise during several different grid conditions and topologies, al-
lowing early indication of impending voltage collapses. The method is further tested
in [50], where the method is extended and applied for distance relays of transmission
lines feeding weak areas.

2.3.4 Thévenin equivalent coupled single-port methods

In [43], it was shown that the TE matching methods do not work properly for
multi-load systems. To overcome these difficulties, a concept called coupled single-
port circuits was introduced, where an additional term modeling the coupling effects
of generators and other load variations of other buses was added. In [51], it was
found that the coupled single-port model may still yield underestimations if loads
are not proportionally increasing. A modified coupled single-port model was then
proposed to handle the underestimations that occur if loads are not proportionally
increasing. Another extension was proposed in [52], which could better incorporate
the dynamic nature of the grid equivalence in the estimations. Here, adjustments
to the equivalent parameters of the coupled single-port model were calculated from
two consecutive phasor measurements at the corresponding bus to capture the power
system evolution.

It should be noted that these methods rely on PMUs covering all relevant generation
and load buses, requiring a very well developed PMU configuration.

2.3.5 Reactive reserves monitoring

Voltage instability is highly related to the incapability of the system to provide
sufficient reactive power reserves to maintain voltages around nominal values. By
monitoring the reactive power reserves of system components such as synchronous
generators and static var compensators, the remaining reserves can be used as an
indicator for VID [10]. Several studies have examined reactive power reserves as an
indicator for VID, examples including [53–56]. However, a difficulty in using reactive
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power reserves for VID is that reactive power cannot be effectively transmitted over
long distances on inductive transmission lines. Hence, although reactive reserves do
exist in certain areas of a power system, it is infeasible to transmit it to the areas
with low system voltages. Thus, methods using reactive reserves monitoring need to
only take into account that reactive power reserves need to be close to the affected
area to be effective [54,55].

2.3.6 Sensitivities with OEL anticipation

In [18], a method using the sensitivities of reactive power generation to reactive
power loads is considered. The method fits an extended set of algebraic equations to
the sampled state of a power system, which is either gathered directly from wide-area
phasor measurements or from a state estimator. Then, a sensitivity computation
is computed to identify when a combination of load powers has passed through the
system’s maximum. The method does not require explicit modeling of the system
loads, but will take into account OEL activation, either directly from measurements
or by anticipation techniques. The method was tested and compared to conventional
TE matching methods in [57], where the method proved to be significantly faster
than conventional TE methods to identify voltage instability.

2.3.7 Machine learning-based VIP

The concept of voltage instability prediction (VIP) significantly differs from conven-
tional VID methods. Most methods for VID attempts to detect when the system is
close, or have already reached, the point of maximum load power. However, when
this point is reached, instability can develop quickly and the remaining time for sys-
tem operators to initiate emergency control actions may be too short. In contrast,
machine learning-based methods for VIP attempts to predict the onset of instability.
This would allow system operators to get an indication, almost instantaneously after
a disturbance, whether that disturbance is going to cause a voltage collapse in the
near future. These methods are generally based on off-line training of a chosen ML
algorithm to be able to correlate a certain state space with the future state of the
system. In Chapter 7, a new method for VIP is proposed and presented.
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Chapter 3

Neural networks and machine
learning

This chapter provides a theoretical background of machine learning and supervised
learning. The general structure and training aspects of neural networks are pre-
sented. Furthermore, an introduction of recurrent neural networks and the long-
short term memory architecture is presented. This theory serves as an overview of
the subject which is the main method used in the following chapters.

3.1 Machine learning: an overview

Machine learning (ML) can be defined as a set of methods and statistical models
used to perform specific tasks without using explicit instructions; rather relying on
patterns and inference on data. ML algorithms differ in their approach, the type
of task or problem that they are intended to solve, and the type of data used as
input and output in training. ML is often divided into three main types of learning,
namely: supervised learning, unsupervised learning, and reinforcement learning.
Unsupervised learning is used to find hidden patterns and structures in data, while
reinforcement learning refers to algorithms used to perform optimal-based decisions,
often under various degrees of uncertainty. In supervised learning, which is the
approach mainly used in this thesis, the ML algorithm is trained on a set of data
that contains both the inputs and the desired outputs, where typical applications
include classification or regression.

One of the simplest supervised learning algorithms is linear regression, where we are
given a set of N input-output training data pairs {(x1, y

1
)...(xN , yN)}. A linear

regression model have the general form of f(x) = xW +b, which is used to generate
a linear function mapping each xi to each yi. In training of the linear regression
model, the aim is to find the most suitable parameters for the weight matrix W and
the bias vector b, to minimize a chosen objective function (commonly the average
squared error). Once the algorithm is fully trained, it is capable to predict or
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estimate similar outputs from now unseen input data. However, in more general
cases where the relation between x and y is not necessarily linear, we may need to
develop a nonlinear function mapping the inputs to the outputs [58]. In this thesis,
we will mainly rely on various methods based on neural networks to develop these
nonlinear functions.

3.2 Feed-forward neural networks

Feedforward neural networks (NNs), also known as multilayer perceptrons, are
loosely inspired by the neurons in the human brain and its ability to classify and
learn events from input data. The strength of NNs lies both in their capability of
learning and approximating nonlinear functions and the scaling performance of the
methods when trained on large sets of data. The universal approximation theorem,
a famous theorem in NN mathematics, states that a feed-forward NN with a sin-
gle hidden layer can approximate any given function arbitrarily well, provided that
sufficiently many neurons are available in the hidden layer [59].

A typical NN with a single layer of hidden units is presented in Fig. 3.1. The NN
consists of connected nodes, known as artificial neurons, stacked in different layers.
Neurons in one layer only connect to neurons of the immediately preceding and the
immediately following layers. The input layer receives external data, while the layer
that produces the final result is denoted as the output layer. Between these layers
are the hidden layers, where each neuron has a nonlinear activation function, which
imitates the actions of synapses in a biological brain. The connections between
each neuron is represented by weight parameters and the aim in training a NN is
to adjust these parameters so that the network can accurately map the inputs to
the outputs. In the following sections, we provide a general overview of the steps
needed in training the network. We provide the NN model for a single hidden layer,
which can then be generalized to NN models using multiple hidden layers.

Input layer Hidden layer Output layer

x1

x2

x3

xM

W1 W2

σ

σ

σ

h1

h2

hN

Figure 3.1: A neural network with a single hidden layer.
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3.2.1 The forward pass

The forward pass in a NN is used to compute the outputs, both in training as a
means to adjust the weight parameters, but also in actual implementations where
the outputs of the network are used as estimates or predictions. Following [58], the
forward pass of the single hidden layered NN is presented below. Superscripts M
and N refer to the number of input features and the number of hidden neuron cells
in the hidden layer. Vector notation is used, meaning that, for instance, the output
of the hidden layer h (x) is not the output of a single neuron cell, but the output
of a vector of N neuron cells. The operation is summarized here for a single sample
by the following steps.

The input layer first passes a row vector x ∈ R
M of inputs through the weight

matrix W 1 ∈ R
N×M , illustrated by the lines connecting each of the cells in Fig. 3.1.

The outputs of the hidden layer is computed by applying an element-wise nonlinear
function on the weighted input values:

h (x) = σ(W 1x + b1) (3.1)

where σ is a nonlinear activation function, and b1 ∈ R
N is a bias term for the first

weight matrix. Common activation functions used in the hidden layers of NNs are
the hyperbolic tangent function (Tanh) or the recitified linear (RelU) function. The
outputs of the hidden layer are passed through the second weight matrix W 2, which
is used to compute the outputs z:

z = W 2h + b2 (3.2)

where b2 is a bias term for the second weight matrix. The dimensions of W 2, b2,
and consequently z depends on the application of the NN and the number of target
values. A final activation function is applied in the output layer to generate the
estimated target values: ŷ = f(z). For binary classification, a sigmoid activation
function is applied on the sum estimated outputs, generating ŷ ranging from 0 to 1:

ŷ =
1

1 + e−z
(3.3)

In multiclass classification, a softmax activation function is applied that normalizes
it into a probability distribution consisting of K number of probabilities proportional
to the exponents of the input numbers:

ŷ =
ez

i
∑K

j=1
ezj

(3.4)

for i = 1, ..., K and z = (z1, ..., zK) ∈ R
K , where K is the number of observed target

values. In regression, ŷ is simply a linear combination of z.

3.2.2 Loss and learning

The aim of training a NN is to tune the weight matrices connecting each layer
of neurons so that the network can accurately model the relationship between the
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inputs and the target values. A suitable loss function L (ŷ, y) is first applied to
the difference between the estimated target vectors and the true target vectors that
are used in the training set. To use a NN for classification, cross-entropy (log-loss)
functions are commonly used, while for regression purposes other means of loss such
as the mean squared error (MSE) are applied.

The tuning of the parameters in the weight matrices is performed iteratively using
gradient-based optimization algorithms, which refers to moving along an error gra-
dient towards some minimum level of error of a defined objective function J . Using
the whole training set to update the weight parameters is commonly referred to as
batch gradient descent, in which the objective function can be defined as:

J =
1

S

S
∑

i=1

L (ŷ, y) (3.5)

where S is the total number of samples in the training set. In batch gradient descent,
the objective function is defined as the average loss over the whole training set.
However, batch gradient descent is often computationally inefficient and requires
significant memory when a network is trained on large sets of data. To overcome
this issue, training methods that use smaller subsets of the total training set is
often used. In mini-batch gradient descent, a smaller batch is used to update the
parameters. When all batches in the whole training set have been used to update
the weight parameters, it is said that the network has been trained for one epoch.

The gradient of the objective function is computed with respect to the weight pa-
rameters and the bias vectors. A method known as backpropagation, where the
computed gradient is passed back along each layer to update the weight parameters
connecting each layer. The weight parameters are updated iteratively in small steps,
and it is common to train a NN for several epochs to reach good performance on
the training set.

3.2.3 Overfitting and validation

The aim in training a NN is not to fit the data on the specific training set, but
rather to generalize the training so that the network can provide good mapping on
yet unseen data. A common problem when training NNs is overfitting, where the
network is trained too closely to the specific training set, with the result that it fails
to fit additional data or predict future observations accurately.

To ensure that the network is not overfitting on the training data, the performance
of the network on a separate validation set is commonly monitored. In case the
validation loss starts to increase, the training of the network can either be stopped,
or various regularization techniques can be applied to avoid overfitting. Many regu-
larization techniques are based on limiting the capacity of the networks, by adding
different penalties to the objective function J . A very common and simple regular-
ization function is the L2 parameter norm penalty, also known as weight decay. This
technique penalizes large numbers of the weight parameters by adding a regulariza-
tion term Ω = λ 1

2m

∑k
i=1

||w||2i to the objective function. The value of λ controls
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how strict the regularization is, and m is the number of training samples. A too
small value of λ may result in an insufficient regularization with overfitting as a
result, while a too large value may result in underfitting or high variance, with poor
performance on both the training set and the validation set. Another popular regu-
larization technique is called dropout, where a certain percentage of the connections
between each layer are randomly masked (or "dropped"). This technique ensures
that the network does not rely too heavily on certain connections.

3.2.4 Hyperparameters and network depth

Hyperparameters are parameters that control the training of the NN, and include
parameters such as the learning rate of the optimization algorithm, the number of
epochs the network is trained, or the structure and number of neurons in the hidden
layers. The hyperparameters play a crucial part in the performance of the NN
and a hyperparameter search is generally conducted where different combinations
of hyperparameters are assessed and tested [58].

Deeper network architectures, with several hidden layers ordered in chain-like struc-
tures, are often able to use far fewer hidden units per layer, and thus far fewer
parameters, compared to more shallow networks used in the same applications.
Deeper architectures are also found to better generalize the performance on unseen
data. However, the drawback of deeper architectures is that these also tend to be
harder to optimize [58].

3.3 Recurrent neural networks

In many applications, the capability to provide accurate classifications or estimations
at a specific time t would be more accurate if it was possible to account for previous
or historic data. Recurrent neural networks (RNNs) provides this capability by
using sequence-based networks that are adapted for processing sequences of input
data, capable of utilizing both current and past data [60]. The concept of RNNs
is not new, but has received an increasing amount of attention in recent years. In
power systems, RNNs have previously been used in applications ranging from market
forecasting [15], transient stability assessment [16], and in power quality assessments
[17].

A typical RNN-sequence is illustrated in Fig. 3.2, where each block has a directed
connection to the following block in the sequence. The main difference from a
feedforward NN is that the output of each block depends not only on the input
vector at the current time step but also on the output from previous blocks in the
sequence. If the block is the first one in the sequence, the inputs are made up solely
by the input vector. Depending on the architecture of the RNN, the output vector of
each block can be used for both classification at the current time step, and/or used
as an input to the following block. Each block contains interior connections, weights,

25



3. Neural networks and machine learning

x
t-1

RNN

h
t-1

x
t

h
t

h
t-1

h
t

x
t+1

h
t+1

h
t+1

RNN RNN

Figure 3.2: A sequence of consecutive RNN blocks.

and non-linear activation functions. The block’s complexity ranges from those of
simple RNNs using conventional neuron layers, to more advanced structures such as
the long-short term memory (LSTM). RNN are generally trained using an approach
called backpropagation-through-time. Backpropagation-through-time is similar to
the backpropagation used in conventional NN, with the difference that the error
gradients also have to be propagated back in time through the RNN-sequence [61].

3.3.1 Long short-term memory

The standard implementation of RNN has difficulties in capturing long-term depen-
dencies of events that are significantly separated in time. When the error signal
is passed back through many RNN sequences, it tends to either blow up or van-
ish [62]. This is effect is generally recognized as vanishing or exploding gradients.
In an LSTM network, the information and the error gradients can be propagated
through time within an internal state memory cell, making the network capable of
memorizing features of significance over time [63].

A typical LSTM-block is illustrated in Fig 3.3. The state memory cell, illustrated
by the light grey area, is controlled by nonlinear gating units that regulate the flow
in and out of the cell [64]. Following [63] and [64], the forward operation of an
LSTM block is summarized below. It should be noted that each block consists of a
number of hidden LSTM cells. Vector notation is used, meaning that, for instance,
the hidden state vector ht is not the output of a single LSTM-cell at time t, but the
output of a vector of N LSTM-cells. The operation of an LSTM block at a time t
may then be summarized by:

f t = σ
(

W fxt + U fht−1 + bf

)

(3.6)

it = σ
(

W ix
t + U ih

t−1 + bi

)

(3.7)

c̃t = tanh
(

W cx
t + U ch

t−1 + bc

)

(3.8)

ct = f t ⊙ ct−1 + it ⊙ c̃t (3.9)

ot = σ
(

W ox
t + U oh

t−1 + bo

)

(3.10)

ht = ot ⊙ tanh(ct), (3.11)

where element-wise multiplication is denoted by ⊙, σ is the logistic sigmoid function,
tanh is the hyperbolic tangent function, and with the following variables:
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Figure 3.3: Detailed schematics of an LSTM block.

• xt ∈ R
M : input vector to an LSTM block

• ht,ht−1 ∈ R
N : output vector at time t respectively t-1

• f t ∈ R
N : activation vector of the forget gate

• it ∈ R
N : activation vector of the input gate

• c̃t ∈ R
N : vector of the candidate gate

• ct ∈ R
N : cell state memory vector

• it ∈ R
N : activation vector of the output gate

where W , U , and b represent the weight matrices and bias vectors for each gate.
The superscripts M and N refer to the number of inputs and hidden LSTM cells in
each LSTM block, respectively.

The information stored in the state memory cell is regulated by the operation of the
different gates, as illustrated in Fig. 3.3. By the operation of (3.6), the forget gate
controls what information should be stored from the previous memory cell state, and
what can be discarded as irrelevant. The input gate and candidate gate control and
update the memory cell state with new information by the operation of (3.7)–(3.8).
In (3.9), the state memory cell is first updated by an element-wise multiplication of
the previous cell state memory vector and the resulting vector of the forget gate.
Then, the state memory cell is updated with new values provided by an element-wise
multiplication of the resulting vectors from the input gate and the candidate gate.
Equations (3.10)–(3.11) show how the hidden state is updated by the operation of
the output gate, modulated by the updated cell state memory vector.

An LSTM network may then be constructed by creating a sequence of several LSTM
blocks. A partition of an LSTM sequence is illustrated in Fig. 3.4, where each block
has a directed connection to the following block in the sequence. If the block is the
first one in the sequence, the past system state is initialized with a preset value.
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For a deep LSTM network, with several stacked layers, the inputs to the deeper
layers consist of the hidden states of LSTM blocks of previous layers. The cell
state memory is only passed along the time sequence between LSTM blocks of the
same layer. Typically, for classification purposes, an output vector y is generated
by applying a nonlinear function of the hidden state implemented by a separate
feedforward NN. Depending on the application of the network, output vectors may
be computed for a single, or several, LSTM block’s hidden states.
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Figure 3.4: An LSTM sequence with a directed connection between the blocks.
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Chapter 4

Description of a real-time voltage
stability assessment tool

In this chapter, the overall functionality of the proposed real-time voltage stability as-
sessment tool (RVSAT) is presented. The RSVAT is based on two developed methods
presented in subsequent chapters. The first method is developed for preventive pur-
poses, where a method for fast DVSM estimation is developed. The second method
is developed for emergency purposes, where a method for VIP based on an LSTM
network is developed. In Chapters 6 and 7, each of the two developed methods will
be presented in more depth. Furthermore, the test system used in evaluating the
developed RVSAT is presented and its general characteristics are briefly discussed.

4.1 Real-time voltage stability assessment tool

This thesis aims to develop a tool for real-time voltage stability assessment (RVSAT)
that can support system operators and increase the transmission capacity of a power
system. An overview of the proposed RVSAT in the setting of a monitoring system in
a power system is presented in Fig. 4.1. The functionality of the RVSAT is divided
to handle the two complementary tasks in VSA: i) emergency and ii) preventive
monitoring.

The proposed method for emergency monitoring is based on using a RNN with
LSTM for VIP, from now on abbreviated into LSTM-VIP. The method is designed
to take current and historic measurements to assess whether the current state will
cause voltage stability issues several minutes into the future. As time progresses and
if new events occur in the system, the network updates the assessment continuously.
Stability warnings are then passed to the system operator, which can initiate emer-
gency control actions, such as load shedding in certain areas. The network is also
adapted to be able to indicate where in the system instability emerges, following the
approach developed in [15], allowing more cost-effective countermeasures.
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Figure 4.1: An overview of the proposed RVSAT and the signals and control
actions in a monitoring system.

The proposed method for preventive monitoring is based on using conventional NNs
to increase the computational efficiency in estimating the DVSM. The method com-
putes the N -1 voltage security margins which are then passed to the system operator.
The security margins are used to compute the transfer capacity in the system which
is used in up and down regulation. Through price signals, such as price area dif-
ferences, the actors on the market can adapt to the changing system transmission
capacity. The system operator can also initiate preventive control actions, for in-
stance by controlling reactive power components, to adapt to the estimated security
margins.

Both methods use real-time system measurements gathered directly from the power
transmission system. The requirements on the system measurements, such as mea-
surement update rates and the availability of phasor measurements, are discussed
in each of the chapters covering the functionality of each method. To assure that
errors and missing values are filtered out, measurements are assumed to always be
preceded by a state estimator.
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4. Description of a real-time voltage stability assessment tool

4.2 Test system

The methods are tested on an updated version of the classical Nordic32 test system,
presented in [65]. The system is fictitious but is similar to the Swedish and the
Nordic power system. A one-line diagram of the test system is presented in Fig.
4.2. The system is divided into four different regions:

• "North": mainly consists of hydro generation and some smaller loads.

• "Central": the largest load center with significant generation of thermal power
generation.

• "Eq": An equivalent of an external system connected to the "North".

• "South: An area with thermal generation which is loosely connected to the
"Central" area.

The Nordic32 test system has long transmission lines of 400-kV and 220 kV nominal
voltage. The test system also includes a representation of regional systems operating
at 130 kV. Table 4.1 provides the active power generation and load in each area and
for the whole test system.

The system is heavily loaded with large power transfers mainly between the areas
"North" and "South". The transferable power is limited by the reactive power ca-
pabilities of generators in both of these areas. A disturbance in the transmission
capacity connecting the "North" and the "Central" areas is critical for the stability
of the system. A reduced transmission capacity, caused by, for instance, a discon-
nected transmission line, would increase the strain on the remaining lines in the
system. The increased current in the remaining transmission lines would increase
the reactive power losses in the system, which would cause lower system voltages.
Voltage-dependent loads are restored through the actions of LTCs. The load restora-
tion has an adverse effect on the voltage stability of the system as the restored loads
will cause increased stress on the remaining lines in the system and may cause the
system to deteriorate further. Reactive power limits of generators are enforced by

Table 4.1: Active power generation and load for the Nordic 32 test system.

Area Generated power (MW) Load (MW)

North 4628.5 1180.0

Central 2850.0 6190.0

South 1590.0 1390.0

Eq. 2437.4 2300.0

Total 11505.9 11060.0
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OELs which further limits the capability to maintain nominal voltages in the system.

For the developed Nordic32 system, two developed operating points were presented
in [65]. "Operating point A" is an unsecure operating point and an outage of ei-
ther a larger thermal generating unit in the "Central" area or a disconnection of a
transmission line connecting the "North" and "Central" areas may cause instability.
"Operating point B" is a secure operating point which should be able to withstand
the loss of any single component. In the following simulations, the test system is
mainly operated in and around the secure "operating point B". All time-domain sim-
ulations have been performed using PSS®E 34.2.0 with its built-in dynamic models.
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Figure 4.2: The Nordic32 test system used in testing the developed algorithms.
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Chapter 5

Comparison of dynamic and static
voltage security margins

In this chapter, the difference between static and dynamic voltage security is es-
tablished. First, the theoretical difference between the two methods are established
and then visualized using the concept of transient P -V curves. Second, numerical
comparisons are provided to further examine the differences between the different
security margins under various load configurations and types of disturbances. The
chapter is mainly based on the results established in Paper I.

5.1 Theoretical comparison of DVSM and VSM

In this section, the theoretical difference between the DVSM and the conventional
VSM is established and then visualized using the concept of transient P -V curves. A
small test system’s dynamic response following a disturbance is used in the analysis.

5.1.1 Small test system

In the following examples, the impact of load dynamics and the voltage control
devices (e.g. excitation control for synchronous generators and synchronous con-
densers) are mainly taken into account in the analysis. The small 2-bus test system
in Fig. 5.1 is used in the analysis. It consists of a controlled sending end volt-
age (E∠0), supplied by a voltage source through a reactance Xf . A complex load
(P + jQ) is fed through a number of lines represented by inductances with the total
reactance of Xt.

A popular method in static voltage stability analysis is to use P -V curves, where the
receiving end voltage is plotted with respect to an increasing active load transfer
in the system. In the following figures in this section, P -V curves for the case
when E = 1.05 pu, Xt = 0.4 pu, and a fully active power load are illustrated.

35



5. Comparison of dynamic and static voltage security margins

E∠0 V1∠θ1Xt

P+jQ

X
f

Figure 5.1: Simple 2-bus system used in the analysis.

The reactance Xf is initially neglected, but will be introduced in Section 5.1.4. An
additional P -V curve is plotted in each figure for a N -1 case when one line has been
disconnected (increasing Xt to 0.5 pu). Assuming lossless transmission, the curves
are developed using the classic voltage equation for a two bus system, given by [9]:

V =

√

√

√

√

E2

2
− QXt ±

√

E4

4
− X2

t P 2 − XtE2Q (5.1)

where the upper part of each P -V curve corresponds to the solution of (5.1) with
the plus sign, while the lower part of each curve corresponds to the solution with
the minus sign.

The voltage instability mechanism is mainly driven by loads and the impact of load
modelling in voltage stability analysis is imperative [9]. The power consumption of
loads are affected by the system voltages and different load models are often used
to characterize this relationship. One conventional model is the exponential load
model, which is given by:

P = zP0

(

V

V0

)α

(5.2)

Q = zQ0

(

V

V0

)β

(5.3)

where P0 and Q0 are the active and reactive power consumed at voltage V equal to
the reference voltage V0 when z = 1. z is a dimensionless and independent variable
indicating the actual loading of the system [9]. The voltage dependency is modeled
by the α and β parameters, where α = β = {0, 1, 2} represents constant power
(MVA), constant current, and constant impedance characteristics, respectively.

5.1.2 Estimating DVSM and VSM

The difference in estimation methods if the VSM and the DVSM is illustrated in
Fig. 5.2 using the developed P -V curves. The security margin is defined as the
change in loading from an initial operating condition (OC) to the N -1 collapse
point. It should be noted that in real applications, the limit is often significantly
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Figure 5.2: Difference bewteeen VSM and DVSM illustrated.

smaller due to the other stopping criteria such as too low system voltages. However,
for better illustration purposes, the former limit is used.

In static VSM estimation, the initial post-contingency operating point is found by
first introducing a contingency on the initial OC, which is followed by solving the
resulting power flow study. This is illustrated in Fig. 5.2 by moving along arrow 1′.
The stability limit is then traced along the solution path by iteratively increasing the
system stress until the critical point is reached, moving along the arrow 2′. Contin-
uation power flow methods are preferably used to avoid convergence problems close
to the collapse point [12, 13]. The distance between the pre-contingency operating
point and the N -1 critical point constitutes the VSM.

The steps of estimating the DVSM are conceptually different from VSM, where in-
stead the dynamic security of the system is being tested with an increasing stress
level in the system, illustrated by arrow 1 in Fig. 5.2 [11]. For every new pre-
contingency operating point (an increase in system stress), a time-domain simula-
tion is initiated where the system response following a disturbance is studied. The
simulation runs until the system stabilizes or becomes unstable. The final pre-
contingency operating point that is tested and still provide a stable operating point
is illustrated by moving along the curved arrow 2 in Fig. 5.2. The distance between
the initial operating point and the last pre-contingency operating point that can still
handle a dimensioning contingency without causing a voltage collapse, represents
the DVSM.

5.1.3 Load response after a disturbance

In static VSM, loads are often recognized to maintain a constant MVA characteristic.
This assumption is often true from a long-term system perspective, but does not nec-
essarily mean that the loads themselves behave as constant MVA loads. Equipment
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Figure 5.3: Example of slow load restoration after a contingency.

and control mechanisms such as load tap changers (LTCs) and voltage regulators
will restore load voltages following a disturbance, resulting in recovered load levels
even for loads with constant impedance characteristics [66]. However, even though
loads are considered to have long-term MVA characteristics, they do not necessarily
behave as static MVA loads following a disturbance. Assuming a sudden voltage
change, the loads will initially change according to their instantaneous characteris-
tics, for instance, a mix of constant impedance and constant current load [66]. Then,
they will adjust their impedance or the drawn current to restore the load to their
original level.

This load restoration event following a disturbance, tripping of a line in the system, is
illustrated in Fig. 5.3. The initial OC is located at A. Instantly after a disturbance,
the load is assumed to have constant impedance characteristics, which results in a
change in operating point from A to B. Load restoration dynamics then change
the operating point from B to C, which corresponds to the same initial load level
as point A.

5.1.4 Transient P-V curves and fast load dynamics

In [67], it was shown that if the system starts at a stable equilibrium and is slowly
stressed towards the collapse point without encountering oscillations or other limit-
induced events (e.g. reactive power limits for generators), the static equations are
sufficient to locate the exact collapse point experienced by the dynamic system.
However, the majority of voltage collapse incidents experienced so far have resulted
from large disturbances, typically by the loss of generation or transmission capacity
[11]. In static VSM estimation, the transient state of such events can be neglected
using the assumptions (i) that loads to do not behave as constant MVA loads just
after a disturbance, and (ii) that load dynamics acts significantly slower compared
to the voltage control dynamics of, for instance, excitation system of generators
and synchronous condensers [66]. Hence, the transient impact of voltage control
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dynamics can be neglected and the assumptions developed in [67] would still be
valid.

However, load dynamics of induction motors and power electronic loads, such as
chargers for electric vehicles, are inherently fast. For these components, the load
is often restored in a time frame within a second, similar to that of most excita-
tion systems [9, 68], causing the assumptions used in conventional VSM estimation
to falter. In [66], a concept called transient P -V curves was adopted to visualize
the dynamic impact of voltage control on the static P -V curves. Here, the same
approach is used when the difference between VSM and DVSM is illustrated. The
transient P -V curves can be obtained by modelling and taking into account the
dynamic impact of having the voltage source in Fig. 5.1 behind the reactance Xf .
The assumption used in conventional VSM estimation, that excitation control in-
stantly will restore E to its pre-contingency value after a disturbance, will thus no
longer be true. Instead, E will initially be affected by events in the system but is
controlled back to its nominal value by excitation control of the voltage source. As
the main purpose here is to provide a principal understanding of the concept, the
transient P -V curves in the following figures are hypothetical. Similarly, the curves
illustrating the fast load restoration dynamics from a constant impedance load to a
constant power load are drawn to allow better understanding of the concept.

In Fig. 5.4, the dynamic response following a disturbance is illustrated for a secure
initial OC. The transient P -V curves and the load restoration curves are illustrated
using different shades of grey, where a lighter shade indicates closer in time to
the disturbance. The time just after a disturbance is indicated by t1, while t3

relates to the time when all short-term dynamics have already taken place. The
load is assumed to have long-term constant MVA characteristic, but just after a
disturbance, the load will initially change to a constant impedance characteristic.
Then, by fast load restoration, the load is quickly restored to a constant MVA
characteristic.

The initial OC is found in point A. Just after a disturbance (at t1), the bus voltages
drop caused by a larger current being transmitted through the remaining lines.
The reactive power losses increases in the system, and a larger current is being
transmitted through the reactance Xf found in in Fig. 5.1. The larger current causes
the voltage E to drop initially, resulting in the P -V curve being shifted to the left
(the lightly shaded P -V curve). As a result of the initial load characteristics and
the shifted P -V curve, the operating point moves along the arrow to operating point
B. After the shifted operating point, two separate dynamic responses are initiated.
The voltage control dynamics, here illustrating the excitation system response for
a synchronous generator, is restoring the terminal voltage E to its nominal value.
This causes the transient P -V curve to shift back towards the P -V curve for the
static N -1 case. Simultaneously, the fast load dynamics is restoring the load from
the initial load characteristics back to a constant MVA characteristic. As an effect
of the voltage control dynamics and the load restoration, the operating point moves
along the arrows from B to C, then finally from C to D. In this case, the system
was found to be stable even after the disturbance with the new operating point D.
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Figure 5.4: Transient P -V curves for a secure initial operating condition.

In Fig. 5.5, the same system is slightly more stressed, with a higher level of initial
transferred power. Just after the contingency, the operating point moves along the
arrow from A′ to B′, by same the reasoning as in the previous case. However, due
to the fast load dynamics, there exists no intersection between the curves at t2, and
without any emergency control actions, the system stability would be lost. The
example in Fig. 5.5 illustrates a type of event that the DVSM could identify and
take into account, which is not possible using a static VSM. It should be noted that
the P -V curve for the N -1 case and the load characteristic at t3 still intersect in
this case, indicating that a static VSM would still classify the initial OC as secure.

5.1.5 DVSM versus VSM

The analysis in the previous section showed that the DVSM is to prefer over the
static VSM in power systems with a large share of loads with fast restoration dy-
namics. Furthermore, the closer power systems are being operated to the limits of
operation, the event illustrated in Fig. 5.5, the more likely it is that the system
will become unstable during the transient state after a disturbance. However, the
advantages of using DVSM is not limited solely to the short time instance after a
larger disturbance has occurred in the system. The same type of events may occur
significantly later in a voltage instability event, triggered by larger drops in system
voltages from, for instance, OELs, or undervoltage tripping of generators. These
types of events are generally referred to as short-term instability events induced by
long-term dynamics [9]. It should be noted that methods based on QSS and combi-
nations of QSS and time-domain simulations as was suggested in [24], cannot deal
with those type of events.

A clear advantage of using the DVSM (and the method based on QSS), is that in
static VSM, the notion of time is fully ignored, and by that the impact of, for in-
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Figure 5.5: Transient P -V curves for an unsecure initial operating condition.

stance, timer settings of OELs, LTCs, and switched reactive power components [16].
Furthermore, equipment such as air conditioners, induction motors, and undervolt-
age relays, may either stall or trip due to temporary low voltages, which is an effect
that can better be taken into account in either time-domain simulations or QSS
simulations.

5.2 Numerical comparison of DVSM and VSM

In this section, a numerical comparison between the VSM and the DVSM is pre-
sented to further examine what parameters will cause the two methods to compute
the security margins to differ. The Nordic 32 test system is used in the analysis.

5.2.1 Methodology for numerical comparison

The security margins are computed for two different types of disturbances, and
under a large range of different load configurations. Only different configurations of
the exponential load model have been taken into consideration. The two types of
disturbances used in the simulations are the following:

• Case A: A three-phased fault for 100 milliseconds, followed by tripping the
faulted line. The faulted line is the one connecting the two areas "North" and
"Central" between bus 4032 to bus 4044.

• Case B: The exact same fault type as for Case A, with the difference that
the fault is now cleared after 40 milliseconds by tripping the faulted line.

The fault clearing-time of 100 milliseconds is the same as the one used in [65]. The
actual fault clearing-time is dependent on relay time (that is, fault detection and
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relay logic’s) and circuit breakers’ operating time.

The security margins were computed by increasing the power transfer between the
areas "North" and "Central". All loads in the "Central" area were increased incre-
mentally and uniformly, starting from the secure "operating point B" in [65]. The
increase in loading was met by simultaneously and uniformly increasing the gener-
ation of the generators in the "North" area. The distribution of the added load and
generation was based on the initial load or the rated capacity of each generator.
Thus, a bus with a larger initial load, or a generator with a higher rated capacity,
received a larger share of the increased load and generation. The increased losses
caused by a higher power transfer on the lines were assumed to be compensated
either by a change in the output of the slack bus or by automatic changes in the
governor models connected to each generator. All generation that could not be sup-
plied by the regular generators was distributed to the slack bus generator in the
system, g20.

Two different methods to compute the VSM are compared to the DVSM. As the
tested methods to compute the security margins differ in their approach, some slight
adjustments to the test system were required to ensure that the methods could be
compared. The governor models of the hydro stations in the Nordic32 system were
thus changed to the more generic governor model of IEESGO [69]. The new governor
model, with its dynamical properties, is presented in Appendix A. The IEESGO
model was chosen as it uses mechanical power as a direct reference for the controller
which allows direct adjustments of generator power setpoints. The different methods
to compute the security margins are the following:

1. VSM based on full Newton-Raphson solutions (V SMF N): The static
voltage security margin is preferably computed using methods stable close to
the system critical point, such as the continuation power flow algorithm (CPF).
However, it is not uncommon for the security margin to still be computed using
conventional load flow computations.

The fault is first introduced to the base case. The power transfer is then
increased in small increments of 10 MW, where for each increment of system
loading, a new Newton-Raphson load flow is solved to estimate if the system is
still stable. The system is considered unstable if either i) the load flow solution
does not converge, or ii) any transmission bus voltage is lower than 0.9 pu.
The Newton-Raphson load flow solutions were calculated assuming stepping
tap adjustments, using the previous cases voltage magnitudes and angles as
starting values (no flat start) and a maximum of 20 iterations.

2. VSM based on dynamic loadability limits (V SMDLL): In [65], an alter-
native method to the CPF was used to compute the VSM, based on stressing
a system in its post-contingency state using dynamic simulations. Here, the
VSM is evaluated from time-domain simulations by slowly ramping up the
system stress, allowing the system to stabilize between each system stress in-
crement. The steps for the computation are the following:
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• Apply disturbance: The contingency is applied in the system from the
base case. The system is then allowed to stabilize by running the dynamic
simulation without any additional disturbances for 300 seconds.

• Increase system stress: The system load is then increased in incre-
ments of 5 MW, which is distributed among all the loads in the "Central"
area. Simultaneously, the governor reference for all the generation units
in the "North" area is increased to compensate for the increased load
level. The new IEESGO model for the governors takes a mechanical
power reference as inputs.

• Allow system to stabilize and check for stability: After the in-
creased system stress, the time-domain simulation runs for 100 seconds.
The system is considered unstable if either the simulation crashes or if
any transmission bus voltage is lower than 0.9 pu.

• Re-iterate: The system stress increase is re-iterated until the system
becomes unstable. The difference in loading from the base case to the final
stable operating point in the stressed post-contingency system represents
the computed VSM.

3. DVSM based on time-domain simulations (DV SM): The DVSM is
estimated in the same approach as is later described in Section 6.1. To sum-
marize the approach, the system stress is iteratively increased in the system’s
pre-contingency state. For each increment of system stress, a time-domain
simulation is initiated where the system response following a disturbance is
studied. The simulation runs until the system stabilizes or becomes unstable.
The difference in loading between the initial operating point and the last pre-
contingency operating point that can still handle a dimensioning contingency
without causing a voltage collapse, represents the DVSM. A precision value of
ǫ = 10MW was used in the simulations.

5.2.2 Results and discussion

In Table 5.1 and Table 5.2, the computed security margins for the different load
configurations are presented for Case A and Case B. The largest difference between
the three methods is found for cases with a high share of constant MVA characteristic
of the active part of the loads. For these cases, the DVSM is significantly lower than
the two measures of the VSM. The largest difference is found for Case 1A when
the active part of the load has a fully constant power characteristic. Here, the
DVSM is only 70 MW, while the VSMDLL is 350 MW, and the VSMF N is 298 MW.
This is in accordance with the theory developed in Section 5.1.2, where a larger
penetration of loads with fast load restoration (implicitly modeled by a constant
MVA characteristic) will cause the DVSM to be lower than the VSM. Similarly, the
DVSM and the VSMDLL is found the be very close for system load configurations
where the share of loads with constant MVA characteristic is fairly small, such as
the cases 11-15 (both A and B).
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Table 5.1: Case A: Three-phased fault during 0.1 seconds cleared by tripping line.

Constant

MVA I Z

Case (P/Q) (P/Q) (P/Q) VSMF N VSMDLL DVSM
number [%] [%] [%] [MW] [MW] [MW]

1A 100/0 0/0 0/100 298 350 70
2A 99/0 1/0 0/100 298 360 90
3A 95/0 5/0 0/100 298 380 260

4A 90/0 10/0 0/100 299 390 360
5A 80/0 20/0 0/100 298 400 410
6A 50/0 50/0 0/100 299 435 420

7A 100 0/50 0/50 299 330 80
8A 95/0 5/50 0/50 299 350 230
9A 90/0 10/50 0/50 299 380 330

10A 50/50 50/50 0/50 299 425 330
11A 0/0 100/0 0/100 299 455 460
12A 0/0 50/0 50/100 299 480 470

13A 33.33/0 33.33/0 33.33/100 299 450 450
14A 0 20/0 80/100 299 490 510
15A 20/0 0/0 80/100 299 475 500

The VSMDLL is higher than the VSMF N , which can be explained by that the
VSMDLL is more stable close to the system collapse point. The computation of
the VSMF N stops at roughly the same level of system stress for every case, caused
by the Newton-Raphson algorithm not converging. The VSMDLL, which is essen-
tially a more stable method to compute the VSM than the VSMF N , is capable of
stressing the system closer to limit before any of the stability criteria is met.

The differences between the DVSM and the VSMDLL are generally smaller for Case
B when the three-phased fault is cleared in 0.04 seconds rather than 0.1 seconds.
This result can be referred to the previously developed theory of the transient P-V
curves. The lowered system voltages during the fault-time will affect the transient
P-V curves in the same manner that the tripped line did in the example developed
in Section 5.1.4, but to an even larger extent. During the fault-time, the voltages
drop significantly more than if the line would have simply been tripped. Thus, if the
fault-clearing time is sufficiently long, it is possible that the load restoration in the
system has time to push the system out of stability before the voltage restoration
devices have time to act.
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Table 5.2: Case B: Three-phased fault during 0.1 seconds cleared by tripping line.

Constant

MVA I Z

Case (P/Q) (P/Q) (P/Q) VSMF N VSMDLL DVSM
number [%] [%] [%] [MW] [MW] [MW]

1A 100/0 0/0 0/100 298 390 140
2A 99/0 1/0 0/100 298 390 190
3A 95/0 5/0 0/100 298 390 370

4A 90/0 10/0 0/100 299 400 370
5A 80/0 20/0 0/100 298 405 410
6A 50/0 50/0 0/100 299 430 390

7A 100/0 0/50 0/50 299 380 110
8A 95/0 5/50 0/50 299 385 230
9A 90/0 10/50 0/50 299 380 330

10A 50/50 50/50 0/50 299 425 330
11A 0/0 100/0 0/100 299 425 460
12A 0/0 50/0 50/100 299 455 490

13A 33.33/0 33.33/0 33.33/100 299 450 450
14A 0/0 20/0 80/100 299 490 510
15A 20/0 0/0 80/100 299 475 500
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Chapter 6

Fast Dynamic Voltage Security
Margin Estimation

This chapter presents a method for fast DVSM estimation, based on the methodology
and the results established in Paper I. The method is proposed to be included as
a preventive monitoring application in the developed RVSAT, earlier presented in
Chapter 4.

6.1 Introduction

In Chapter 5, the circumstances when the DVSM is to prefer to the conventional
VSM was presented. However, DVSM estimation is computationally demanding,
where multiple time-domain simulations are required to trace the security limit for
a range of different contingencies. In this chapter, a methodology for fast estimation
of the DVSM is proposed to overcome the computational difficulties when estimating
the margin. The method use NNs to provide both an estimate of the actual DVSM
at a specific OC, and to determine the dimensioning contingency for the system
with respect to the DVSM. These estimated values are then used as starting points
in a method called dual binary search to significantly reduce the required computa-
tional time in computing the actual DVSM. The method is developed to mitigate
inconsistency issues associated with ML methods under new or unseen operating
conditions.

6.2 Methodology for fast estimation of the DVSM

The NNs are trained on a training set consisting of i) computed values of DVSM
for a range of different OC, and ii) the dimensioning contingency for the same OCs.
Once the NNs are trained, they can almost instantaneously provide estimations
of the DVSM for a certain OC, and classify which contingency is most likely to
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be dimensioning for the system. The first step of the method is the generation
of credible operating conditions (OCs) and estimations of the DVSM for a set of
credible contingencies. The method is tested on the Nordic32 test system found
in Fig. 4.2 with all data and models as presented in [65]. After a representative
training set has been generated, the training scheme of the two NNs is presented.
Each step in the methodology is described in the following subsections.

6.2.1 Generation of training data

The training data for the NNs were generated using PSS®E 34.2.0 with its in-built
dynamic models [69]. Here, full time-domain simulations have been used, but the
methodology could also be generalized for combinations of QSS and full time-domain
simulations. The steps of generating the training data are illustrated in the flowchart
in Fig. 6.1 and can be summarized as follows:

Randomly initialize
starting OC

Feasible?

Yes

No

Run dynamic simulation
& apply contingencies

Conti

Meeting stability criteria?

Increase ΔP1 and solve load flow

Yes

DVSM

|ΔP1| < ε

Yes

Return to previous
pre-contingency

state

No
New ΔP1

ΔP1 = -|ΔP1|/2
No

i = i + 1
Use sampled DVSM
as starting point for

next contingency

Sample lowest DVSM and
dimensioning contingecny
as target values (yDVSM, ycont)

Sample initial OC
as input values (x)

START

Figure 6.1: Flowchart of the generation of training data for the DVSM and the
neural network.

(i) Choose initial operating conditions: All initial OCs were randomly gen-
erated around the stable operating point of the simulated Nordic32 system
denoted as "operating point B" in [65]. The total load in the system for each
initial OC was generated by multiplying all the active loads randomly from
the same uniform distribution (80 % of the original load as the lower limit, 95
% of the original load as the upper limit). Then, each individual load was var-
ied by again multiplying the now updated load value with a random variable
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generated from a new uniform distribution (this time with 80% as the lower
limit, and 120 % as the upper limit). The power factor of all loads were kept
constant. The total change in loading was then randomly distributed among
all the generators in the system. The generated initial OCs were first solved
using a conventional full Newton-Raphson load flow solution, which served as
a starting point for the dynamical simulation. In the case the system was not
found feasible, the initial OC was re-initialized.

(ii) Increase system stress and solve load flow: The system stress was then
increased for the secure initial OC by increasing the power transfer between
the two areas "North" and "Central". The increased system stress was achieved
by increasing the loads in the "Central" area with a total of ∆P1 = 200 MW,
while simultaneously increasing the generation in the "North" area with the
same amount. The power factors of each load were again kept at the initial
values. The distribution of the added load and generation was based on the
initial load or the rated capacity of each generator. Thus, a bus with a larger
initial load, or a generator with a higher rated capacity, received a larger share
of the increased load and generation. All generation that could not be supplied
by the regular generators were distributed to the slack bus generator in the
system, g20, see Fig. 4.2. After the loads and generation were updated, the
load flow was reiterated which then served as a starting point for the time-
domain simulations. To avoid numerical and stability issues when increasing
the system stress of the static system, the system stress was increased in small
increments where a load flow solution was solved for each increment.

(iii) Run time-domain simulation and test for security: A time-domain sim-
ulation was then initialized for the first contingency. In the relatively small
Nordic32 test system, the same single contingency was found to be dimension-
ing for almost all different initial OCs. To test the possibilities of using a NN to
classify the dimensioning contingency, two different contingencies were hand-
picked as they were found to be dimensioning for different OCs. The tested
contingency type was a three-phased fault on a transmission line during 0.1
seconds, followed by tripping the faulted line which was then kept tripped dur-
ing the remaining time of the simulation. The lines between the buses "4031
- 4041 " and "4032 - 4044 ", connecting the "North" and "Central" areas were
used, see Fig. 4.2 for reference. Each simulation then ran for a total of 500
seconds. The system was considered secure if, at the end of each simulation,
all transmission bus voltages were above 0.90 pu.

Each dynamic simulation ran for a total of 500 seconds but was in the case of
a major voltage collapse stopped in advance. The simulation time was chosen
to ensure that the system either fully stabilized or collapsed. It should be
noted that the required simulation time is dependent on the power system in
consideration, and it is likely that different simulation times would be required
in actual implementations of the algorithm. The system was considered secure
if, at the end of each simulation, all transmission bus voltages were above
0.90 pu.
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(iv) Re-iterate and test other contingencies: In case the system was found
secure for the tested contingency, the system stress was increased again with
∆P1, followed by another security test. In case the system was not found
secure, the previously added system stress was halved, and the process was re-
initialized. This process of iteratively updating the system stress and testing
for security continued until the increase in system stress was below a precision
value of ǫ = 5 MW. The DVSM was then computed by taking the difference in
system loading between the initial OC and the secure system with the highest
level of system stress.

Once the DVSM for the first contingency was computed, the same procedure
was repeated for the second contingency. To save computational time, the
estimated DVSM for the first contingency was used as a starting point for
the estimation of the second contingency. If the system at that level of system
stress was found secure for the second contingency, the simulation was stopped.
Otherwise, the search algorithm continued until a new smaller value of the
DVSM was found.

(v) Sampling the input values and target values: An input vector x con-
sisting of measurements of all bus voltage magnitudes and angles, and active
and reactive power flows were sampled from each one of the initial OCs. The
choice of which input values to include in the training was based on the results
in [70], which found that bus voltage magnitudes and angles were found to be
the best combination of inputs when estimating the VSM using a NN. The
active and reactive power flows were then added as additional inputs as this
was found to increase the accuracy in the estimations even further. Two tar-
get vectors yDV SM and yCont were generated by sampling the DVSM for each
case, and the contingency that was dimensioning for the specific case, respec-
tively. The previously described steps were re-iterated until a sufficiently large
training set was generated. Due to the random nature in which the training
data was initialized and generated, some of the generated OCs were found to
be correlated with very low DVSM values, despite being initialized with low
system loading. To ensure that no anomalies were included in the training
set, all OCs resulting in DVSM values below 150 MW was excluded from the
training set.

6.2.2 Architecture of the neural networks

The architecture of the two NNs used in this thesis are presented in Fig. 6.2 and the
specific details regarding the architecture and the training parameters of the two
NNs are specified in Table 6.1. In the training phase, the two NNs takes the same
vector of input values, which are forwarded to each of the hidden layers through a
set of weights, illustrated by the lines connecting each of the neurons. The output of
each neuron in the hidden layer is computed using a non-linear activation function on
the sum of all the inputs, which is then forwarded to the output layers. The rectified
linear activation function (RelU) was used as the non-linear activation function for
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the two NNs. For the NN estimating the DVSM, the outputs are forwarded to a
regression layer with a linear activation function. For the NN responsible of ranking
the contingencies, the outputs are forwarded to a layer with a softmax activation
used for classification. The softmax activation function is generally used for multi-
class classification but generally works well also for binary classification as is the
case here. The softmax activation function outputs a probability vector, where each
class is given a certain probability. The probability vector can then be used to rank
the contingencies in order of which most likely will become dimensioning.

In the training phase, the networks use the true target vectors yDV SM and yCont,
while during the test or prediction phase, the network estimates the DVSM and the
ranked contingencies by generating the vectors ŷDV SM and ŷCont for the current OC.
The supervised training approach aims to update and learn the suitable values for
the weights connecting each layer, implicitly modeling the non-linear relationship
between the inputs and outputs.

6.2.3 Training

Different data sets were used in training, validation, and testing of the method. The
training data has the dimension (364 x 6000), where the dimension represents the
number of inputs, and the total number of training cases, respectively. Each network
was trained for a maximum number of epochs, where an epoch is finished when all the
cases in the training set have been used to update the network parameters. To reduce
overfitting on the data, ridge regression (also known as L2 regularisation) was used
to ensure the data does not rely to heavily on any single feature. To further reduce
overfitting, a technique called dropout was applied where a certain percentage of the
connections between each layer were masked/dropped, to ensure that the model does
not rely too heavily on certain connections. The mean squared error (MSE) was used
as a metric for the NN estimating the DVSM, while the categorical cross-entropy
loss function was used for the NN classifying the dimensioning contingency. An
adaptable algorithm for gradient-based optimization, Adam, was used in training the
network [71]. The learning rate was the only parameter that was specifically tuned
for the algorithm, while the remaining used the default values according to [71].

It should be noted that both the training parameters and the architecture of the
two networks have been iteratively tuned to increase the regression and classification
accuracy. A deeper architecture with more hidden layers was found to not increase
the performance for the specific test case and training set size. Other hyperparam-
eters and network architectures would likely have better performance for other test
systems than the Nordic32. By increasing the training set size further and spending
even more effort in tuning the networks, an even better accuracy could be achieved.

51



6. Fast Dynamic Voltage Security Margin Estimation

Input layer Hidden layer Classification layer

Input layer Hidden layer Regression layer

x1

x2

x3

xn

yDVSM

Dimensioning contingency

x1

x2

x3

xn

yCont
S

of
tm

ax
 f

u
n

ct
io

n

NN 2

NN 1

Figure 6.2: The two ANNs trained to evaluate the DVSM and the buses with the
lowest margin to instability.

6.2.4 Fast DVSM estimation and dual binary search

In [11], a binary search method was proposed to estimate the DVSM. Here, an
alternative approach denoted as the dual binary search method is proposed, which
should be able to increase the computational speed of the DVSM. The trained NNs
in Fig. 6.2 takes the same set of measurements and generates: (i) an estimated
value of the DVSM, and (ii) an estimated ranked order of the contingencies that
most probably will be dimensioning for the current OC. The estimated DVSM is
used as a qualified estimate of the real DVSM, which is validated through actual
time-domain simulations. The dual binary search method is then used to take
advantage of the estimated DVSM and the dimensioning contingency to reduce the
computational time when validating the real DVSM for the system.

The dual binary search method is illustrated for two cases in Fig. 6.3. Case 1 illus-
trates the estimation process for an overestimated value of the DVSM, while Case 2
illustrates the estimation process for an underestimated value of the DVSM. Black
dots indicate secure operating points and white dots indicate unsecure operating
points. The estimated DVSM is always the starting point for the search of the ac-
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Table 6.1: Design and hyperparameters used in training.

Parameter NN 1 / NN 2
D

at
a

Number of inputs 364 / 364
Training cases 6 000 / 6 000
Validation cases 400 / 400
Test cases 400 / 400

A
rc

hi
te

ct
u
re Hidden layers 1 / 1

Final activation function Linear / Softmax
Hidden cells 128 / 32
Hidden layer activation RelU / RelU

T
ra

in
in

g

Max Epochs 1 000 / 3 000
Learning rate (α) 1 · 10−6 / 1 · 10−5

Dropout 0 % / 50 %
L2 parameter 0.01 / 0.01
Optimizer Adam / Adam [71]
Loss metric MSE / Categorical cross-entropy

tual DVSM of the system. The system stress is increased to this point iteratively
using the approach explained in section (ii) to avoid convergence problems.

Once the stressed static base case is found, a time-domain simulation is initiated for
the highest ranked contingency by the second NN, which is the contingency that most
likely will be dimensioning for the DVSM. The initial estimated DVSM level is then
tested for the chosen contingency. In case it is stable (respectively unstable), the
system stress is increased (respectively decreased) with a certain value represented
by ∆P2. A value of ∆P2 equal to the mean squared error (MSE) of the estimated
values for the DVSM is proposed, which should represent a reasonable uncertainty
and step size for the estimation. If the new operating point is found to be secure,
the system stress is again increased with ∆P2. In case it is not found to be secure,
which happens in the example illustrated in Fig. 6.3, the system stress is reduced
by ∆P2/2. The dual binary search is then continued until a secure operating point
is found and when the step size in system stress change is smaller than a specified
precision level (ǫ).

This level of system stress is then tested for the other contingencies, in ranked
order, until all lower-ranked contingencies have been tested and found secure. For
both the cases illustrated in Fig. 6.3, this level of system stress for the second-ranked
contingency was found to result in a secure operating point. A third and final ranked
contingency is then tested, which for Case 1 in Fig. 6.3 is found to be unsecure. The
system stress is thus reduced further for this case, resulting in a secure operating
point which then constitutes the dimensioning DVSM for the system. It should be
noted that for Case 1, the contingency ranking was not perfect, with the result that
an extra time-domain simulation was required.
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Figure 6.3: Dual binary search for multiple contingencies.

6.3 Results and discussions

In the following section, the results from the regression and classification on the test
set for the two NNs are presented. Furthermore, the reduction in computational
effort is compared between the conventional tracing method and the proposed dual
binary search method. Finally, practical applications and discussions related to
DVSM estimation are presented.

6.3.1 Regression and classification accuracy

The prediction accuracy for the NN estimating the DVSM is presented in Fig. 6.4,
where the estimated DVSM is plotted with respect to the real DVSM for the test
set. The diagonal line indicates where the points should lie in case the estimated
DVSM perfectly matches the real DVSM. Table 6.2 lists the mean and maximum
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Figure 6.4: Prediction accuracy of estimating the DVSM.

Table 6.2: Regression results for estimating the DVSM.

Mean Maximum Mean
estimation error estimation error squared error

1.49 % 10.96 13.35 MW

error of the estimations in percentage, as well as the MSE presented in MW. The
results indicate that the NN is generally capable to accurately estimate the DVSM
given an initial OC, with a mean error for the test set of 1.49 %. The maximum
estimation error was found to be 10.96 %, while the MSE was estimated to 13.35
MW.

The classification accuracy of the NN used in ranking the dimensioning contingency
is presented in Table 6.3 in the form of a confusion table. Each number in each row
represents the instances of the real dimensioning contingencies, while each number
in each column represents the instances of the predicted dimensioning contingencies.
The conditional probabilities of correctly classifying the dimensioning contingency
are presented in the column furthest to the right. Similarly, the conditional proba-
bilities of a dimensioning contingency actually belonging to the predicted class are
presented in the bottom row of the table. The total accuracy for the classification
is presented in the rightmost corner of the table, and an accuracy of 91.3 % was
provided for the test set. Thus, in about 9 instances of 10, the NN is capable of
classifying which contingency that will be dimensioning for the DVSM for a specific
OC. It should again be mentioned that the estimation and classification results could
be enhanced further by either increasing the training set size, or by a more careful
exploration of suitable hyperparameters for the training of the networks.
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Table 6.3: Confusion table showing real and predicted dimensioning contingencies.

Predicted

L4044 - L4032 L4044 - L4032 Accuracy

R
ea

l L4044 - L4032 104 23 81.9 %
L4044 - L4031 12 261 95.6 %

Accuracy 89.6 % 91.9 % 91.3 %

Table 6.4: Reduction in computational effort using the proposed method.

Average number of time-domain simulations
Conventional tracing Dual binary Relative reduction
method search method in computations

15.3 4.7 -69.2 %

6.3.2 Computational efficiency

In this section, the computational efficiency is compared between the proposed fast
dual binary search method and the more conventional tracing method that was used
in generating the training set (see Section 6.2.1 for reference). The proposed fast dual
binary search method, explained in Section 6.2.4, uses the estimated DVSM value
and the dimensioning contingency as a starting point to validate the real DVSM.
The computational efficiency is measured as the average number of time-domain
simulations required in estimating the DVSM. The results of using the two different
methods are presented in Table 6.4. The average number of time-domain simulations
required in estimating the DVSM using the conventional tracing method was found
to be 15.3, while the corresponding number using the proposed dual binary search
method was 4.7. The reduction in average number of time-domain simulations
required was thus -69.2 % when the proposed method was applied.

It should be noted that the exact comparison in computational efficiency between
the two methods is of comparatively little interest, as it mainly applies to the specific
test case used in this thesis. For instance, the computational savings are probably
significantly higher in most real applications, where a larger range of contingen-
cies may be dimensioning for the DVSM. Furthermore, in real applications where
the range of the DVSM may be larger than what has been used here, the conven-
tional search algorithm would require significantly more time-domain simulations to
find the true DVSM. Similarly, it is also possible to further enhance both the con-
ventional search algorithm and the dual binary search algorithm by, for instance,
choosing more suitable values of ∆P1, or increasing the precision value of ǫ. The
most notable result is instead that the computational effort in estimating the DVSM
can be reduced from requiring a large number of time-domain simulations, to only
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requiring a few. Although a few time-domain simulations would still take some time
to compute for a real power system, it should be possible to provide sufficiently fast
estimations of the DVSM to classify it as a "near real-time" estimation.

6.3.3 Impact of sudden topology change

In any real application, the performance of a NN is dependent on its generalization
capability. This refers to the capability of the NN to generalize the learning from the
actual training set to other, yet unseen, cases. In this section, the performance of the
NNs to generalize their estimations when subjected to test cases where unplanned
topology changes have taken place is examined.

For simplicity, only topology changes in the form of opened transmission lines are
considered. To ensure that the Nordic32 test system is still secure despite the topol-
ogy changes, only topology changes in the "North" region, see Fig. 4.2, were con-
sidered. Furthermore, only transmission lines between buses served by two parallel
transmission lines were used in generating the test set with topology changes. A new
test set of 400 cases was then generated in the same manner as explained in Section
6.2.1, with the difference that the topology changes were now added randomly.

In Fig. 6.5, the prediction accuracy of the NN estimating the DVSM is presented
when the network has been trained on two different training sets. Case 1 presents the
prediction accuracy when no unseen cases with topology change have been included
in the training set. Case 2 presents the prediction accuracy when a few (100)
training cases with topology change have been included in the training set. For
Case 2, the two NNs were re-trained on the updated training set using the same
training approach as previously described. Table 6.5 lists the mean error of the
estimations in percentage for each case, as well as the MSE presented in MW. The
result for Case 1 indicates that a sudden topology change will significantly affect the
accuracy of the predictions. Although many cases were accurately predicted, the
number of outliers increased significantly. The prediction accuracy was higher for
Case 2, even though only a very small number of cases with the topology changes
were added to the training set. The classification accuracy of the NN used in ranking
the dimensioning contingency was also affected significantly for the two cases, with
a total classification accuracy of 55 % and 78.5 % for case 1 and case 2, respectively.

The results highlight the importance of obtaining a representative training set and
also taking into account the possibilities of unplanned topology changes. It was seen,
that by the inclusion of even a very small set of training cases with various topology
changes, the prediction accuracy could be increased significantly. Thus, in the event
of an unplanned change in the system, the system operator could quickly generate a
small training set on the new OC, and then retrain the NNs on the generated data.
It should be noted that the proposed robust methodology of always validating the
estimations of the NNs with actual time-domain simulations reduces the impact of
these types of erroneous estimations. The main impact of a poor estimation of the
DVSM will be that the time to validate it will increase.
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Figure 6.5: Prediction accuracy of the NN during sudden topology changes. With
and without trained on a training set with a 100 training cases with topology changes
included.

6.3.4 Discussions and practical applications

The proposed method is aimed to be used as an online tool for system operators to
estimate a power system’s dynamic voltage security margin. The method does not
necessarily have to replace conventional VSM estimation, but may instead be used
as an additional source of information to system operators to provide better and
more accurate estimates of the total transmission capacity in their systems.

Theoretically, the DVSM estimates by the NNs could be used directly to provide real-
time estimates of the security margin. However, despite years of research, examples
where these methods have been practically applied in system operators’ monitoring
and control systems are, to the authors’ best knowledge, very few. From a system
operator view, an inferior method that always works are generally preferable to a
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Table 6.5: Regression results of the DVSM estimation for the two cases.

Mean estimation error Mean squared error

Case 1 12.97 % 134.38 MW
Case 2 7.33 % 63.59 MW

superior method that in some instances does not. The proposed method is thus
suggested to utilize the advantages of ML, while still ensuring that the method
always provides good estimates regardless of the current OCs.

The results in the previous section indicated that by using the proposed method,
the number of required time-domain simulations to estimate the DVSM could be
reduced to only a few, allowing system operators to estimate the DVSM in a time
frame that could be defined as "near real-time". The update frequency of security
margins will affect the required transmission reliability margins as the underlying
system continuously change between the assessments. The actual estimation speed
will still be affected by a range of different factors such as the computational speed
of the hardware being used, the size of the specific power system in consideration,
or the required precision (i.e. the value of ǫ).

Measurements of bus voltage magnitudes and angles, as well as active and reactive
power, have been assumed to be available, either directly from measurements or
from state estimations of the system. However, to ensure that missing values and
errors are filtered out, all measurements should preferably be preceded by a state
estimator. To adapt to the evolving operating conditions and self-rectify any bad
predictions, the two NNs should be trained continuously during operation. Using
approaches such as stochastic gradient descent, the NNs weight parameters can
continuously be tuned to increase the robustness and accuracy.
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Chapter 7

Voltage instability prediction
using a long-short term memory

network

This chapter presents an algorithm for real-time VIP, based on the developed method-
ology and the results established in paper II and paper III. The methodology for train-
ing the VIP tool to indicate where in the system the instability would emerge was
first presented in paper III. The final VIP tool is mainly based on the proposed archi-
tecture presented in paper II. The method is proposed to be included as an emergency
monitoring application in the developed RVSAT, earlier presented in Chapter 4.

7.1 Introduction

In Chapter II, the voltage instability event and the need for emergency monitoring
systems were discussed. It was further discussed that conventional methods for VID
may be too slow to detect instability in time for system operators to initiate sufficient
emergency control actions. An alternative option is to use ML-based methods for
VIP, which can predict the onset of instability only seconds after a disturbance has
occurred in a system.

These methods are trained to indirectly correlate a post-disturbance state and learn
its dynamical trajectory, to be able to directly assess whether the system is heading
towards instability. Most previously developed methods for VIP have in common
that only instantaneous measurements are used as inputs to the VIP algorithms.
These inputs represent the "state signal" that the ML algorithm uses to predict the
future state. Ideally, the state signal should summarize all relevant information
required to determine the future state of the system. A state signal achieving this
is said to have Markov property [72]. However, the dynamic response of a power
system cannot be modeled as a first-order Markov process using only the static
states provided by available measurements in the power system. Rather, the future
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state of the system also depends on a range of unknown state variables such as the
rotor speed of generators, tap positions, or rotor slips of induction motors.

In response to these limitations, a new method based on a recurrent neural network
(RNN) with long short-term memory (LSTM) is proposed. LSTM networks excel
at capturing long-term dependencies [64], which is an inherent aspect in long-term
voltage stability [10]. The methodology and test results for the proposed method,
from here on denoted as LSTM-VIP, are presented in the following sections.

7.2 Methodology for LSTM-VIP

The proposed method for real-time VIP is based on off-line training of an LSTM
network on a large data set consisting of time-domain simulation responses following
a set of credible contingencies. The method is aimed to be used as a supplementary
warning system that can assess the current state of the system in real-time. The
LSTM network takes real-time and historic measurements and attempts to assess
whether the current state will cause voltage stability issues several minutes into
the future. As time progresses and if new events occur in the system, the network
updates the assessment continuously. The network is also adapted to be able to
indicate where in the system instability emerges, following the approach developed
in [73], allowing more cost-effective countermeasures.

The first step of the method is the off-line generation of credible operating conditions
(OCs) and contingency scenarios using time-domain simulations. The method is
generic, but is here tested on the Nordic32 test system with all data and models
as presented in [65]. After a representative training set is generated, training of
the LSTM network is performed. Each step in the methodology is described in the
following subsections.

7.2.1 Generation of training data

The generation of a training set is a critical step and a range of different initial OCs
and contingencies were included to generate a representative training set. Dynamic
simulations were performed using PSS®E 34.2.0 with its built-in models [69]. The
steps of generating the training data are illustrated as a flowchart in Fig. 7.1 and
can be summarized as follows:

(i) Initial OCs: For the Nordic32 system, the initial OCs were randomly gener-
ated around the stable operation point denoted as "operating point B" in [65].
A large number of possible OCs were simulated by randomly initiating the
loads from a uniform distribution around the base case load levels (80 % of
the original load as a lower limit and 120 % as an upper limit), while the power
factor of the loads was kept constant. The total load change was distributed
among the generators based on a weighted random distribution, where a higher
rated capacity of a generator results in a higher probability to cover a larger
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Randomly initialize OC
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N-1

Wait for certain
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Classify each event and generate target value
vectors for whole simulation sequence

N-1-1

Apply a second random
contingency

Reiterate

Apply a random contingencyApply a random contingency

Figure 7.1: Flowchart for generating input data and target values.

share of the total load change. All generation that could not be supplied by
the regular generators were distributed to the slack bus at g20, see Fig. 4.2.

In real applications, more delicate methods for efficient database generation
and more careful generation of relevant OCs should be used [15,74], where for
instance the impact of unit commitment and topology changes are taken into
account.

(ii) Solve and check for feasibility: The generated OCs were solved with a
power flow simulator, which served as a starting point for the dynamical sim-
ulation. If the system load flow did not converge, the initial OC was re-
initialized.

(iii) Start dynamic simulation and introduce contingencies: Two separate
dynamic simulations were then initiated for the N -1 and the N -1-1 cases. The
process is illustrated in Fig. 7.2. For each of the two cases, the system runs
without any contingencies for 65 seconds to generate a sufficient amount of
N -0 data for the LSTM network to train on. At t = 66 seconds, the same
first contingency was applied to both of the cases. After an additional uni-
formly distributed random time in [10−30] seconds after the first contingency,
a secondary consecutive contingency was applied for the N -1-1 cases. Events
resulting in several (near-)simultaneous contingencies were not taken into ac-
count (N -k events).
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The considered contingencies in the simulations were either (i) tripping of a
generator, or (ii) a three-phased fault during 0.1 seconds, followed by tripping
the faulted line, which was then kept tripped during the remaining time of the
simulation. The first contingency was chosen to be a major fault, meaning a
fault on any transmission line connecting the different main areas in the system
(excluding the "Eq." area, see Fig. 4.2), or any larger thermal generator in
the "Central" area. The second contingency, for the N -1-1 cases, included
tripping of any transmission line in the whole system, excluding lines in the
"Eq." area. No variations of load and generation were taken into account
during the dynamic simulations as these, in the relatively short time of the
simulations, are presumed to have a small impact on the system stability. In
real settings, depending on the system and the experience of the operator, all
relevant contingencies can be used in the training.

(iv) Sample inputs and run until stopping criteria: For each of the two cases,
an input vector xt consisting of measurements of all bus voltage magnitudes
(Vmag) and angles (Vθ), active and reactive power flows (Pflow, Qflow), were
sampled every second (∆t = 1s) and saved in a data file. The value of ∆t = 1s
is dependent on the possible measurement update rate in the actual system and
will determine the rate the estimations are available to the system operator.
No information regarding the type and location of applied the contingencies
were sampled, as this information implicitly can be learned by the LSTM
network. For instance, the LSTM network should be able to correlate a zero
power flow in a transmission line with that line being out of service.

Each dynamic simulation ran for a total of 560 seconds, but was, in the case
of a major voltage collapse, stopped in advance. The simulation interval of
560 seconds was chosen to allow time for all dynamic events to occur and for
the system to either fully stabilize or collapse.

(v) Classification: For each case, a sequence of true target value vectors y1, ..., y560

was generated for every time step in the time-domain simulation. Each yt in
these sequences represents the classification of the system if the system is al-
lowed to run from time t up until 560 seconds without any changes to the
current system. As time progresses and new events occur, the class of yt may
change. The sequences consist of multidimensional vectors where the actual
class is encoded using one-hot (binary) encoding.

The classification was performed according both to the severity and the lo-
cation of the system degradation at the end of the time-domain simulation.
The system was defined as stable if all transmission bus voltage magnitudes
were above or equal to 1 pu, in an alert state if any transmission bus voltage
magnitude ranged between 0.9 < V < 1.0 pu, and in an emergency state if
any transmission bus voltage magnitude was below 0.9 pu. Overvoltages were
not taken into account.

The target values for the alert cases were also classified according to where
the lowest bus voltage magnitudes were found at the end of each dynamic
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Figure 7.2: Example of classification of an N -1 and an N -1-1 case.

simulation. The Nordic32 test system is predefined into four different regions,
namely: "Eq", "North", "Central", and "South" [65]. The regions "North",
"South", and "Eq." were found to be stable regions, and no alert events were
found in these regions for any of the simulated cases. To test the capability
of the network to also indicate where instability emerges in the system, the
"Central" area was divided into three separate regions (indicated by C1, C2,
C3 in Fig. 7.3). The classification for each time step of each simulation
belonged then to one of 5 different possibilities. Either the whole system
was predicted stable; it ended up in an emergency state; or an alert state was
predicted in one of the three defined regions (C1, C2, or C3) where the lowest
occurring transmission bus voltage was found.

The classification process is illustrated in Fig. 7.2. The target values are always
classified as stable up until the first contingency. From different combinations
of OCs and contingencies, the system may then end up being in a stable
state, an alert state in area C1, C2, or C3, or in an emergency state. For
the N -1 case, the sequence of true target value vectors from the time of the
contingency to the end of the simulation are classified depending on which of
these five states the systems end up in. For the example of the N -1 case in
Fig. 7.2, the system ends up in an alert state in the C1 area. For the N -1-1
case, the target values are classified as stable up until the first contingency.
The target values are then gathered from the N -1 case, using the end state of
that simulation for classifying the state between the first and the consecutive
contingency. After the second consecutive contingency, the system runs until
it either collapses or until 560 seconds. Depending on this final state, the
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Figure 7.3: One-line diagram of Nordic32 system with subareas.

sequence of true target value vectors from the second contingency until the
end of the simulation is classified. In the example in Fig. 7.2, an emergency
state is reached. Note that the scales in Fig. 7.2 are different from those in
the simulations for easier interpretation.

It should be noted that the classification of the different states (stable, alert,
emergency) could be performed more intricately to satisfy other criteria of
stability. For instance, these could be related to a minimum level of loadability
of the system in its post-disturbance state. The loadability limit could then
be computed by, for instance, parameterized continuation methods such as the
continuation power flow (CPF) method [12], or by certain line indicators [39].
Other stability criteria could include the capability of the system in its post-
disturbance state to handle yet another disturbance.

(vi) Reiteration: The described steps are reiterated until a sufficiently large train-
ing set is generated.

7.2.2 Architecture of the LSTM network

The proposed LSTM network architecture, shown in Fig. 7.4, is generally referred to
as a "many-to-one" architecture, where previous measurements in the time sequence
are used for the classification in the final block. The network consists of three stacked
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Figure 7.4: The proposed LSTM network architecture.

LSTM layers which are used to capture different levels of features from the inputs.
Each LSTM block consists of 32 individual LSTM cells. The first layer of LSTM-
blocks takes a generated sequence of input vectors as inputs; then by mathematical
operation as presented in Section 3.3.1, the output of each block is forwarded both
to the following block in the sequence, as well as to the upper layer of LSTM-blocks.
The inputs to the deeper layers consist only of the hidden states of LSTM blocks
of previous layers, while both the hidden state and the cell state memory is passed
along the time sequence between LSTM blocks of the same layer.

The LSTM network is designed to take sequences of 60 time steps of measurements
as inputs. The internal architecture of each LSTM cell and functionality of the
nonlinear gating units as presented in Section 3.3.1, allows the LSTM network to
fully utilize and pass forward the information from the first to the final time step in
the sequence. The third layer of LSTM-blocks only passes the output forward along
the time sequence. The output layer at time t is a fully connected network with
softmax activation for classification. In training, the network uses the true target
vector yt at time t, while during the test or prediction phase, the network estimates
a prediction vector ŷt at time t. The interpretation of the prediction problem is
further explained in section 7.2.4.

7.2.3 Training the LSTM network

Different data sets were used for training, validation, and testing of the method
on a mix of N -1 and N -1-1 cases. The training data set has the following dimen-
sion (135, 000 × 364 × 560), where the dimension represents the number of training
cases, the number of inputs, and the total interval in seconds for each simulation,
respectively.

Before training, a process generally referred to as sequence preprocessing was per-
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Table 7.1: Design and hyperparameters used in training.

Parameter Values and size

D
at

a
Simulation interval 560
Input dimension 364
Input data type Vmag, Vθ, Pflow, Qflow

Target classes 5
Training cases (N -1+N -1-1) 45,000 + 90,000
Validation cases (N -1/N -1-1) 5,000 / 10,000
Test cases (N -1/N -1-1) 10,000 / 10,000

A
rc

hi
te

ct
u
re LSTM layers 3

LSTM sequence length 60
FC activation function Softmax
LSTM hidden cells 32
LSTM Activation function Tanh

T
ra

in
in

g

Max Epochs 500
Learning rate (α) 0.0001
Dropout & recurrent dropout 50 % / 50 %
Optimizer Adam [71]
Loss metric Categorical cross-entropy

formed to prepare batches of sequences with suitable length. The network is designed
to take a sequence of 60 time steps of measurements as inputs and subsequences with
a length of 60 time steps (xt−59, ..., xt) were thus extracted from the 560 seconds
long simulation intervals, for different values of t. For each subsequence of input
vectors, a corresponding target value (yt) at time t was gathered. The sequence pre-
processing was performed 120 times for each training and validation case by varying
t between values of t = [60, 180]. The lower bound of t is required to always allow
historic data to be included into the sequence. The LSTM network could have been
trained on the whole simulation interval by increasing the upper bound of t from
180 to 560. However, since the method is proposed to be used in fast VIP appli-
cations, there is less usefulness of predicting instability long after the contingencies
have occurred.

The generated subsequences were then used to train the LSTM network. Due to
memory limitations, a method called mini-batch gradient descent was utilized where
mini-batches of 1000 subsequences were used separately to train the network. The
training was performed for a maximum of 500 epochs. An epoch is finished when all
generated batches have been used to update the network parameters. An adaptable
algorithm suitable for gradient-based optimization of stochastic objective functions,
more commonly known as "Adam" was used in training the network [71]. The algo-
rithm used default parameters according to [71], except for the learning rate which
was tuned. The loss function on which the optimizer is applied is the categorical
cross-entropy function, which is suitable for multi-classification problems. To avoid
overfitting the data, two regularization techniques were used during the training.
First, early stopping was implemented, and the training of the network was stopped
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in case the performance on the validation set did not improve after six epochs. Sec-
ond, a technique called dropout was applied, where a certain percentage of the con-
nections between inputs and the LSTM cells were randomly masked (or "dropped")
to reduce overfitting on the data. Both conventional dropout and recurrent dropout
between consecutive blocks were applied during the training phase.

All other parameters related to the training of the network are presented in Table
7.1. The LSTM network was trained and implemented in Python, using the Keras
library with TensorFlow backend. The architecture and parameters used to train
the network have been iteratively tuned to increase the classification accuracy. It
should be noted that the tuning could be extended even further to allow an even
better classification accuracy.

7.2.4 Interpretation and intuition of the VIP problem

By the proposed training and architecture of the LSTM network, a classification
problem is solved where the current system state space is separated into different
regions. Every state on a trajectory to a stable, alert (in C1, C2, or C3), or emer-
gency state is labeled accordingly. The LSTM network is then trained on this data
to implicitly learn these asymptotic properties of solutions and the trajectories of
the system state. Once trained, the network can correlate the inputs, current and
historic measurements, with a certain state-space region and trajectory, allowing
warnings of voltage instability only moments after a contingency have occurred in a
system. The classification is performed under the assumption that the current sys-
tem is unchanged, meaning that no additional contingencies or changes in generation
and load configuration will occur. However, as time progresses, new observations
are used as inputs to the LSTM network to continuously update and incorporate
such changes in the system.

This VIP problem should be interpreted as a fixed horizon prediction problem,
where the prediction horizon always is the final state given by the trajectories of
the (dynamical) system. This interpretation assumes that the simulation horizon
of the generated time-domain simulations are sufficiently long so that extending
the simulation horizon even further, for this particular system beyond 560 seconds,
would not change the partitioning of the state space.

7.3 Results

In this section, the classification accuracy of the LSTM network is presented for two
different test sets, one containing only N -1 cases, the other containing N -1-1 cases.
Each test set was composed of 10, 000 cases of dynamic simulations. The test results
of the predictions are presented using categorical accuracy, where the indices of the
true target values are compared to the argument maxima of the predictions. The
accuracy at each time step is then calculated over time for each of the two test sets.
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Figure 7.5: Classification accuracy over time for the proposed LSTM network.

The data were fed into the network in the form of a rolling window, with subse-
quences generated in the exact same manner as described in Section 7.2.3. As time
t progresses, new measurements entered the network from the rightmost block in
the input layer and were shifted to the left in each time increment. Since the LSTM
network require a sequence of 60 time steps of data, no predictions were made before
t = 60. To facilitate the presentation in the following figures, a new time index T is
introduced here. The relationship between the two time indices is T = t − 60. The
LSTM network’s performance for VIP is not only tested during the short JAD state
but during a longer period of the dynamic trajectory the system takes following the
disturbances. This is performed to test the network’s capability to incorporate new
observations and improving its assessment as time progresses throughout a voltage
instability event. The classification accuracy is only plotted for 120 seconds after T
to better visualize the changes in accuracy after the contingencies.

The classification accuracy over time is presented in Fig. 7.5. The classification
accuracy for the N -1 test set dropped significantly at T = 6 seconds, which is the
same instant that the first contingency is applied. The large drop in classification
accuracy can be attributed to low bus voltages instantaneously following the first
contingency, which the LSTM network has learned to correlate to a voltage insta-
bility event. The large drop in accuracy only remained for a single measurement
point. After the first contingency, the classification accuracy increased and remained
constant at 100 % for the rest of the simulations.

The classification accuracy for the N -1-1 test set was identical up until the time when
the consecutive contingencies were randomly applied. During this time, illustrated
by the arrows in Fig. 7.5, the classification accuracy decreased slightly. Since these
contingencies do not occur at the same time instant in each test case, the same
instant drop in accuracy as for the N -1 cases was not seen. The accuracy then
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gradually increased and stabilized at around 97-98 %.

The results show that the LSTM network can classify and predict future stability
almost perfectly for the N-1 contingency cases and with good accuracy for the N-1-1
cases. To examine which cases were misclassified, the prediction accuracy for the
two test sets, evaluated at T = 50 seconds, are presented in Table 7.2 in the form of a
confusion table. Each number in the column in the table represents instances of the
predicted classes and each number in the row represents the instances of the actual
classes. The (empirical) conditional probabilities of correctly classifying a certain
state is presented in the column furthest to the right. Similarly, the conditional
probability of a state actually belonging to the predicted state is presented in the
bottom row of the table. The total accuracy is presented in the lower right corner
of the table. The accuracy for all N -1 cases is 100 % and no cases are falsely
classified. For the N -1-1 test set, the lowest classification accuracy occurred for the
alert states. After inspection of the falsely classified cases, it was found that several
of these were borderline cases where the transmission bus voltage magnitude used in
the classification were very close to what was used in the other classes. The highest
classification accuracy occurred for the emergency cases with 99.8 %.

It should be noted that the test and training sets were weighted with more cases
ending up in certain classes than others. It is thus probable that the results are
slightly biased with higher accuracy for these classes, and that the classification
accuracy of the other classes may be lower as an effect.

7.4 Sensitivity analysis

In this section, a sensitivity analysis of various hyperparameters and other aspects
that will affect the performance of the LSTM network is presented. First, the impact
of the sequence length of the LSTM network is examined and compared to that of
a conventional NN. The impact of different measurement update rates and is then
examined, followed by a study of the network’s generalization capability.

7.4.1 Impact of sequence length

In this section, the performance of the sequence-based approach is tested and com-
pared against a conventional feedforward NN, which only uses a single snapshot of
measurements as inputs. Further, to test the impact of a shorter time sequence, the
results of an LSTM network using a time sequence of 30 time steps, instead of 60,
are presented.

To allow a fair comparison between the two approaches, the feedforward NN used
in this comparison was designed to be as similar as possible to the LSTM network.
Essentially, the design of the NN in the comparison is identical to the final time
step in the LSTM network presented in Fig. 7.4, with the difference that each
layer consists of a hidden layer of neurons. The designed NN has thus three hidden
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Table 7.2: Confusion table showing prediction results and accuracy of the LSTM network evaluated at T = 50 seconds.

Predicted states (N-1 / N-1-1)

Stable state Alert state Emergency state Accuracy

Classification All areas C1 C2 C3 All areas

A
ct

u
al

st
at

es

Stable state All areas 2766 / 1147 0 / 36 0 / 11 0 / 8 0 / 8 100 / 94.8 %

Alert state
C1 0 / 0 856 / 562 0 / 3 0 / 0 0 / 5 100 / 98.6 %
C2 0 / 5 0 / 5 1874 / 1222 0 / 0 0 / 109 100 / 91.1 %
C3 0 / 0 0 / 0 0 / 12 0 / 208 0 / 0 - / 94.5 %

Emergency state All areas 0 / 0 0 / 0 0 / 10 0 / 0 4504 / 6649 100 / 99.8 %

Accuracy 100 / 99.6 % 100 / 93.2 % 100 / 97.1 % - / 96.3 % 100 / 98.2 % 100 / 97.9 %
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unit layers, each layer with 32 hidden nodes. The same FC layer with a softmax
activation function was used. The training for the NN was performed identically as
for the LSTM network, with the exception that instead of a sequence of input values,
a single snapshot was used. The LSTM network using a shorter time sequence was
trained identically to that of the longer LSTM network with the exception that a
shorter sequence of 30 instead of 60 time steps was used.

In Fig. 7.6, the classification accuracy on the N -1-1 test set is presented for the two
LSTM networks with the different time sequence length and for the conventional
NN. The classification accuracy for the conventional NN was around 93 % after all
the consecutive contingencies had been applied, while that of the proposed LSTM
network is around 97-98 %. The results show that the performance of the LSTM
network using 60 time steps in the sequence significantly exceeded that of the con-
ventional NN, generally providing better classification accuracy over the whole time
frame of the simulation cases.

The classification accuracy of the LSTM network using a shorter sequence was sim-
ilar to the one using a longer sequence, with the difference of a large drop in classi-
fication accuracy occurring at around T = 46 seconds, see Fig. 7.6. The accuracy
declined for 20 seconds and was then restored to around 97 % accuracy. A similar
decline in classification accuracy, though less significant, can be noted for the LSTM
network using the longer time sequence at T = 76. Thus, a decline in classification
accuracy started exactly 60 respectively 30 seconds after the consecutive contin-
gencies were introduced (at T = 16) for the two networks, corresponding to the
network’s respective sequence length. One explanation of these results is that the
LSTM networks utilize information concerning the contingency and pre-contingency
state to enhance the classification accuracy. When the networks starts to lose the

Figure 7.6: Impact of sequence length on classification accuracy.
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information about the pre-contingency state, the chance of a misclassification in-
creases. The results strengthen the hypothesis that a long sequence LSTM network
could be used to enhance the state signal to provide better classification accuracy.
Theoretically, an even longer sequence could be used to increase the accuracy even
further. However, this would increase the computational cost of training, and a
balance between classification accuracy and computational cost should be sought.

7.4.2 Impact of measurement update rate

The performance of the LSTM network is in this section tested for different values of
the measurement update rate. The performance is compared between the previously
assumed available measurement update rate of ∆t = 1s and the slower update rates
of ∆t = 3s and ∆t = 5s. Due to the slower update rates, the architecture and the
number of LSTM blocks along the time sequence had to be reduced accordingly.
The original LSTM network was designed to take subsequences of 60 time steps
of measurements as inputs. Thus, for the LSTM network adapted for ∆t = 3s,
the number of LSTM blocks along the time sequence was reduced to a third (20
blocks along the time sequence), while the number of blocks for the LSTM network
adapted for ∆t = 5s was reduced to a fifth (12 blocks along the time sequence). The
LSTM networks adapted for the new measurement update rates were then trained
identically to the original LSTM network, with the difference that now only every
third, respectively fifth, measurement in each generated subsequence were passed
on the networks.

The classification accuracy for the different values of ∆t is presented in Fig. 7.7
using the same N -1-1 test set as in previous sections. The results show that the
performance when using a measurement update rate of ∆t = 1s exceeds those using
a slower update rate. The largest difference can be identified during the period when
the second consecutive contingencies are applied, which indicates that a lower value
of ∆t is especially valuable for classification during the short time that follows a
disturbance. It should be noted that due to the slower update rates of ∆t, there is
no dip in the classification accuracy following the first contingency.

A larger value of ∆t may also increase the time it takes to accurately predict insta-
bility, as new measurements are being passed less frequently to the LSTM network.
In Table 7.3, the average time, after a contingency, to accurately predict the future
state of the system is presented for the different values of ∆t. The average time is
only presented for the time it takes to correctly classify the system states following
the second consecutive contingency, since correct classification following the first
contingency was almost instantaneous in all test cases. The time was computed
as the averaged passed time after the second contingency, up until the time when
the LSTM network could consistently and accurately predict the state of the sys-
tem. For cases that took longer time than 100 seconds to be correctly classified, a
detection time of 100 seconds was assumed to avoid skewed averaged values.

The average time to correctly predict the system state was found to be 6.6 seconds
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Figure 7.7: Classification accuracy over time for different values of ∆t.

Table 7.3: Average time to predict the onset of voltage instability.

Measurement update rates

∆t = 1s ∆t = 3s ∆t = 5s

Average
prediction time [s] 6.6 8.7 10.7

for the proposed LSTM architecture using a measurement update rate of ∆t = 1s.
The corresponding values for the LSTM networks using the slower update rates of
∆t = 3s and ∆t = 5s, were 8.7 seconds and 10.7 seconds, respectively. The longer
time longer time to accurately predict instability for the slower update rates of ∆t
can be attributed partly to a lower classification accuracy, and partly to the fact
that measurements are being updated less frequently.

7.4.3 Generalization capability and training set requirement

The generalization capability of a ML method refers to the capability to generalize
the learning from the actual training set to other, yet unseen, cases. Such capability
is especially valuable in overcoming the combinatorial increase of complexity in the
training when N -1-1 cases are also considered [75].

In Fig. 7.8, the classification accuracy is presented on the N -1-1 test set when the
LSTM network have been trained on three different training sets. The results are
presented when the network was trained on i) the full training set with all N -1
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Figure 7.8: Classification accuracy over time when varying the number of N -1-1
cases included in the training data.

and N -1-1 cases included, ii) a smaller training set with all N -1 cases but where
only a small batch (5, 000) of N -1-1 cases have been included, and iii) a training set
where the network is only trained on N -1. The same training approach as previously
described were used. According to Fig. 7.8, the classification accuracy was signif-
icantly reduced when no N -1-1 cases are included in the test set. When including
the small batch (5, 000) of N -1-1 cases, the classification accuracy increased signifi-
cantly. However, the accuracy is still lower than when the full training set is used.
Thus, the importance of obtaining a representative training set is still imperative if
a high classification accuracy is to be achieved.

7.5 Practical applications and requirements

The method is proposed to be used as an online tool for system operators to pre-
dict the system’s future stability given the current state. It should be stressed that
the method is not proposed to replace conventional voltage instability detection
methods, but rather function as a supplementary tool to provide early warnings.
The instantaneous prediction capability of the proposed method has to be weighed
against the possibility of misclassification of the system’s future stability. When
comparing the proposed method to other conventional indicators for voltage insta-
bility detection (see [10]), it is important to remember that these might be more
accurate once instability detected, but generally take significantly longer time to in-
dicate instability, thus reducing the time frame that system operators have to steer
the system back into stable operation.
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The proposed method is mainly intended for predicting mid-term or long-term volt-
age instability where system operators will have the possibility to act on the warn-
ings provided by the network. Theoretically, the method could be adapted to also
handle short-term voltage instability. However, this would require more frequent
measurement updates to ensure that the onset of short-term instability is detected
in time. Because of the difference in the dynamical trajectories of the system for the
two different types of instability events, training a separate LSTM network would
likely provide better performance. Furthermore, the signals provided by the network
would have to automatically trigger emergency controls, since the available time for
system operators to act on the signals would be too short for manual control actions.

For the proposed method to be effective in prediction of long-term voltage instability,
measurement updates should be available within a few seconds. Here, a measure-
ment update rate each second have been assumed to be available. As was found in
Section 7.4.2, slower measurement update rates lead both to lower classification ac-
curacy and slower predictions. To assure that errors and missing values are filtered
out, measurements should always be preceded by a state estimator. However, state
estimates from a non-linear state estimator based on remote terminal units may
be too slow to be effective. Thus, time-synchronized measurements from wide-area
phasor measurements filtered through a linear state estimator would be preferred.

The softmax classifier of the LSTM network outputs a probability vector, where
each class is given a certain probability. It should be noted that this probability
vector does not provide a true representation of the model confidence. However, it
can still be useful as a proxy by system operators to track the network’s confidence
in each prediction. Thus, the operator can use the probability vector directly in
an online interface to track the network’s belief in each prediction. Alternatively,
argument maxima or other functions could be used to present the most probable
prediction of the network, or, for instance, to avoid predictions of falsely labeled
stable states.

The practical classification accuracy of the proposed method will be affected by
many aspects and will generally be lower than on a simulated test set. One of the
more important aspects are modeling errors, including erroneous system parameters
or inaccurate modeling of parameter values for dynamic models. Such aspects will
introduce a difference between the simulated and the actual dynamic response after
a contingency. However, it should be noted that such limitations are not limited only
to ML based approaches for VIP. All methods for DSA require that the dynamic
models used in assessing the system response are accurately modeled.
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Chapter 8

Conclusions and future research

This chapter summarizes the conclusions and refers back to the developed research
questions and the aim of the thesis. Finally, a discussion of ideas and concepts for
future research work is presented.

8.1 Conclusions

The main aim of this thesis has been to develop a new real-time voltage stability
assessment tool (RVSAT) that can support system operators and allow more efficient
utilization of the transmission grid. The thesis has demonstrated and tested two
new methods for use in real-time voltage stability assessment.

In Section 1.2, four different research questions were identified based on the problem
overview. The aim of the first research question was to examine the impact of higher
penetration of power electronic controlled equipment on current methods for security
margin assessment. This has been examined in the thesis through both theoretical
and numerical analyses of the difference between the static and the dynamic voltage
security margin. The difference between the DVSM and the conventional static
VSM has been illustrated using a method called transient P -V curves, where the
advantages of using the DVSM were established. The numerical comparison of
the two methods confirms the advantages of the DVSM in power systems with
high penetration of loads with fast load restoration dynamics. The results further
indicated that the difference between the methods is smaller for cases when a fast
fault-clearing time is possible.

In the second research question, the need for improvements in current methods for
security margin estimation was emphasized. In response to this, a methodology
for fast estimation of the DVSM has been developed with the aim to overcome the
computational difficulties of computing the DVSM. The method uses a regression-
based NN to provide a qualified guess of the actual DVSM. Moreover, a second
NN is used to provide a classification of which contingency will be dimensioning for
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the system. The estimates from the NNs are used in a method called dual binary
search which is used to validate the actual DVSM using time-domain simulations.
The ML-based approach is thus only proposed to support the estimation of the
DVSM, while the actual DVSM is always validated through actual time-domain
simulations. This two-step approach is proposed with the aim to overcome robust-
ness issues and uncertainty of using ML-based methods, while still allowing near
real-time estimations of the DVSM. The results are promising and the trained NNs
provided good estimations of both the DVSM and classifications for the dimension-
ing contingency. The accurate estimations used in combination with the proposed
dual binary search method was found to successfully reduce the required number
of time-domain simulations, which would allow system operators to overcome the
main practical difficulties of estimating the DVSM. These results also refer back to
the fourth research question which aimed to identify practical barriers for system
operators’ implementations of ML-based methods.

The third research question aimed to develop methods that are both advanced
enough to capture the intricate dynamics during a voltage collapse, while at the
same time are fast enough to be used in real-time. This has been achieved in the
thesis by developing a new approach for online VIP using an LSTM network capa-
ble of utilizing a sequence of measurements to improve classification accuracy. Once
trained, the LSTM network can allow system operators to continuously assess and
predict whether the present system state is stable or if it will evolve into an alert
or an emergency state in the near future. The network is also adapted to be able
to indicate where instability emerges, allowing system operators to perform more
cost-effective control measures. The LSTM network was proposed to improve the
available state signal by implicitly learning the dynamical trajectories of a power
system following a disturbance. The LSTM architecture and the operation of the
gating units ensure that the network is capable of capturing the long-term depen-
dencies that are common in voltage instability events.

The results are encouraging and the proposed method is shown to have high accu-
racy in predicting voltage instability. Almost all N -1 contingency test cases were
predicted correctly, and N-1-1 contingency test cases were predicted with over 95 %
accuracy only seconds after a disturbance. The impact of the sequence length of the
LSTM network was tested and indicated that a longer sequence provided a signif-
icantly better classification capability than both a feedforward NN and a network
using a shorter sequence. Moreover, the generalization capability of the proposed
LSTM network has been examined, where the classification accuracy on N -1-1 cases
was assessed when the system was only trained on N -1 cases. It was found that this
reduced the classification accuracy significantly, whereas including a smaller subset
of N -1-1 cases into the training set resulted in significantly better performance.
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8.2 Future research

Future research topics related to the conclusions of this thesis include the following:

• The developed methods for emergency and preventive monitoring in the RVSAT
provide system operators with real-time warnings and estimations of security
margins. Future research should include methods that can optimally act on
this information. For instance, such methods could include an optimization-
based protection scheme against voltage collapses. It would also be valuable
to develop methods that can accurately determine what preventive control ac-
tions are most effective to increase the security margins in a power system for
a certain operating point.

• The developed methods should also be tested on a real power system to exam-
ine the capacity and limitations. Regarding the proposed method for estimat-
ing the DVSM, it would be highly relevant to examine if the proposed method
is capable of increasing the computational efficiency sufficiently to allow sys-
tem operators to use it in real-time monitoring and operation. The developed
methods for VIP is more difficult to test in a real system since larger distur-
bances cannot be applied without a large impact on the actual system. This
method would instead have to be more rigorously tested through simulations.
Finally, actual numerical comparisons between the DVSM and the VSM in
real power systems would be of high interest, especially when considering high
system penetration of loads with fast dynamic responses.

• More research should be assigned the uncertainties related to the developed ML
algorithms. A difficulty in any supervised learning application is generating a
representative training set. This is especially difficult for a large power system
with a wide range of different operating conditions. Thus, to further examine
the capability to generalize the learning from the actual training set to other,
yet unseen, cases are of special interest. Furthermore, the sensitivity of the
methods to various model and measurement errors should be examined in
further detail.
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Appendix A

Dynamic parameters for the IEESGO model

This appendix presents the model and the dynamic parameters used for the IEESGO
model. The IEESGO takes an active power reference as inputs which allows con-
trolling the mechanical power of the machine directly. Only a very small governor
lag have been used for this specific model.

Table A.1: Results for Case A: Three-phased fault followed by tripping a line.

Parameter Value Description

T1 0.0 Controller lag (sec)
T2 0.0 Controller lead compensation (sec)
T3 0.05 Governor lag (sec)

T4 0.0 Delay due to steam inlet (sec)
T5 0.0 Reheater delay (sec)

T6 0.0
Delay due to IP-LP turbine,
crossover pipes, and LP end hoods (sec)

K1 0.0 1/per unit regulation
K2 0.0 Fraction
K3 0.0 Fraction

PMAX 1.0 Upper power limit
PMIN 0.0 Lower power limit

K1 (1 - sT2)

(1 + sT1)(1 + sT3)

Pmax

Pmin

Speed Pmech1

1 + sT4

1

1 + sT4

K2

1 + sT5

K3

1 + sT6

1 - K3

1 - K2

Pref

Figure A.1: Block diagram of the IEESGO Model.
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