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optimization of variable renewable electricity

integration

Caroline Granfeldt

Department of Mathematical Sciences
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Abstract

The global production of electricity contributes significantly to the release of
carbon dioxide emissions. Therefore, a transformation of the electricity system
is of vital importance in order to restrict global warming. This thesis concerns
modelling and methodology of an electricity system which contains a large
share of variable renewable electricity generation, such as wind and solar
power.

The models developed in this thesis concern optimization of long-term in-
vestments in the electricity system. They aim at minimizing investment and
production costs under electricity production constraints, using different spa-
tial resolutions and technical detail, while meeting the electricity demand.
Furthermore, they are able to capture some of the variation management strate-
gies necessary for electricity systems that include a large share of variable
renewable electricity. These models are very large in nature due to the high
temporal resolution needed to capture the wind variations, and thus different
decomposition methods are applied to reduce solution times. We develop two
different decomposition methods: 1) Lagrangian relaxation combined with
variable splitting solved using a subgradient algorithm, and 2) a heuristic
decomposition approach using a consensus algorithm. In both cases, the de-
composition is done with respect to the temporal resolution by dividing the
year into 2-week periods. The decomposition methods are tested and evalu-
ated for cases involving regions with different energy mixes and conditions for
wind power. Numerical results show faster computation times compared to
the non-decomposed models and capacity investment options similar to the
optimal solutions given by the latter models.

Keywords: variable renewable electricity, variation management, electricity
system modelling, long-term investment models, cost optimization, wind
power integration, Lagrangian relaxation, variable splitting, consensus algo-
rithm.
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1 Introduction

EU’s roadmap 2050 establishes that the greenhouse gas emissions must de-
crease by some 85% until the year 2050 in order for global warming to be
restricted to 2◦C (COM(2011) 885, 2011). The electricity system contributes
significantly to the emissions of carbon dioxide, both in the EU and globally
(see for example Ritchie and Roser (2020) and underlying data sources). A
transformation of the electricity system is therefore needed, and electricity
investment models can be used as a tool to make informed decisions regarding
future electricity generation, storage and transmission capacity. The mathe-
matical optimization models describing the electricity system minimizes the
investment and production costs of the system under electricity production
constraints, while meeting the electricity demand.

The existing systems mostly consist of thermal power (IEA, 2020), and thus
the traditional models are designed with this in mind. The characterization of
such a system, dominated by dispatchable generation, include the ability to
regulate the electricity production to meet instant demand. However, a cost-
efficient reduction of greenhouse gas emissions from the electricity system is
expected to imply a large-scale implementation of varying renewable electricity
generation (VRE), such as wind and solar power. To be able to capture the
variability in electricity generation from VRE, a realistic mathematical modeling
of future electricity systems must include a fine discretization of time (IEA
Wind TCP Task 25, 2018). Furthermore, one key strategy to reduce variability
of wind power is geographical smoothing through trade. Thus, it is desired
to consider a large geographical area in the modeling of the electricity system
while accounting for the transmission bottlenecks within such an area.

There is, however, a conflict between a high temporal and spatial resolution and
reasonable computing times for electricity system models. For real problem
instances on the European scale, the challenge lies in finding this proper balance
while introducing a large share of variable renewable electricity generation in
the mathematical modelling.

1



2 1. Introduction

1.1 Purpose and Aims

The purpose of the project is to formulate and analyze mathematical opti-
mization models that capture strategies to manage the variability of variable
renewable electricity generation. The research is focused on techniques and
methodologies for decomposing and solving long-term investment models,
where investments should be made into new electricity generation capacity. A
key objective is to examine how the temporal and spatial resolution impacts
the solution times using these decomposition methods, and—when possible—
compare the solutions and solution times of the decomposed models to the
non-decomposed model optimal solutions.

1.2 Limitations

Since the models are used to examine long-term capacity investments over
large regions (i.e. entire countries), they are not suited for use to make decisions
regarding how separate power plants should operate. Furthermore, electricity
transmissions within each region are not considered in detail. Instead, the mod-
els use an aggregated continuous electricity generation and storage capacity
for each region. The models consider electricity trade between regions, and the
intention is that this is to be implemented in the project later on. However, at
the moment, trade is accounted for in parts of the results.

We assume a perfect forecast of electricity demand and weather. Thus, there is
no stochasticity in the models and they are purely deterministic. Demand and
weather profiles in terms of, for example, wind speed and water inflow (from
rain and melted ice) to hydropower turbines are based on data from previous
years.

Solar power and different storage technologies (e.g. batteries) are currently
considered in one of the three models presented in this thesis. Electricity used
for heating, and power plants which deliver both electricity and heat (so-called
CHP plants, combined heat and power) are not included in any of the models.

1.3 Outline

The remainder of this thesis is organized as follows. In Chapter 2, the electricity
system and some of its modelling difficulties are described, along with a review
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of some previous modelling work. Chapter 3 presents and compares three
different mathematical optimization models, including variables, constraints
and objective functions. In Chapter 4, the scientific areas and methods used
to solve these models are presented. Chapter 5 discusses how the models are
implemented and solved using the methods introduced in the previous chapter.
A summary of the appended papers are given in Chapter 6, and then finally
Chapter 7 discusses conclusions and the main contributions of this thesis, as
well as topics for future research.
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2 The Electricity system and
modelling

This chapter discusses the electricity system and some modelling difficulties
that comes with it. It also gives an overview of some previous work done on
electricity system modelling.

Electricity is an energy carrier which can be characterized using different
properties, e.g. voltage, current, energy or power. In an electricity system,
electric energy is produced in power plants and then transferred to electricity
consumers connected to an electrical grid. Each power plant has an installed
and available production capacity, typically measured in GW, which controls
the amount of electric power that can be produced at any instant. (Specifically,
one watt is defined as one joule per second and thus measures the rate of
transfer.) The electrical energy produced in a power plant is often measured
in GWh, and is thus the product of the power in gigawatts multiplied by the
running time in hours.

The electricity system inside a region typically consists of different types of
sources for electricity production. These can for example be coal power, nuclear
power, hydropower, wind power, or natural gas turbines.

2.1 Electricity generation technologies

Thermal power plants are, as the name indicates, power plants where heat is
converted to electricity. Water is heated to steam, which is then used to rotate
turbines and generate electricity. Some different fuels used as heat sources are
fossil fuels, nuclear energy, biofuels, and waste incineration. Some thermal
power plants are combined to generate both electricity and heat (e.g. district

5



6 2. The Electricity system and modelling

heating) to consumers, but in this thesis only electricity is considered. The
concept of thermal cycling refers to generating electricity at different demand
levels. As the demand for electricity varies, some electricity generating units
need to be turned on/off in response to these variations. However, every time a
thermal power plant is turned off and on, the different components (e.g. boiler,
steam lines, turbine) are exposed to stress caused by the large thermal and
pressure variations, which then leads to maintenance costs.

In a hydropower plant, electricity is generated by leading water through turbines.
The power extracted depends on the water volume and the height difference
between the water’s in- and outflow.

Wind power generates electricity by using the wind to provide mechanical power
through turbines. Wind power is typically divided into onshore and offshore
wind power. Investment and maintenance costs for offshore wind power are
higher compared onshore wind power (Mone et al., 2017), but offshore wind is
stronger and steadier compared to onshore wind.

Solar power is the technique to convert the energy from sunlight into electricity.
This can be done by using photovoltaics (PV) or concentrated solar power
(CSP). PVs use solar panels which contain photovoltaic cells that convert light
into an electric current by the use of the photovoltaic effect. CSP is a technique
which uses lenses or mirrors to concentrate sunlight into a small beam, and
then use the resulting heat to generate electricity from steam turbines.

2.2 Electricity system modelling

The modelling of the electricity system can be done on different system levels,
which vary with the types of questions that are asked. For example, the unit
commitment problem studies how a set of electricity generators (e.g. power
plants in a country, or turbines inside a power plant) should operate (i.e.
dispatch electricity) in order to meet the demand at the lowest system cost (or
highest revenue). Investment models look at cost-efficient investments in new
capacity to meet future demand. These models typically consider a longer time
horizon compared to the unit commitment problem, but instead lack in system
details. This thesis addresses investment models, and therefore the focus here
will be on those types of models.

In general, the investment models vary in three different dimensions: tem-
poral scope, spatial scope and technological system detail. Figure 2.1 gives
an illustration of the different model complexities, where a larger volume of
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Figure 2.1: Illustrations of the problem complexity depending on the temporal resolu-
tion, spatial resolution, and technological system detail.
a) High temporal and spatial resolution, but low technological system detail
b) High spatial resolution and technological system detail, but low temporal resolution
c) High temporal resolution and technological system detail, but low spatial resolution
d) High temporal and spatial resolution, and high technological system detail

the cube indicates a more complex problem. The models tend to become very
large if all dimensions have a high resolution/detail, and therefore electricity
system investment models typically make sacrifices in resolution in at least one
dimension.

The differences in temporal scope is related to the size of the time step, and the
length of the time horizon. For models with a large share of VRE, a fine time
resolution is needed in order to capture the variations, and thus the size of the
time step needs to be in magnitude of a few hours. The time horizon typically
ranges from a single year to a longer time span, for example all years up until
2050. The longer time resolution can be motivated by the lifetime of power
plants, which is approximately 40 years for thermal power plants. The spatial
scope can be everything from the unit commitment problem on a single power
plant, to models which contain several countries. For the latter case, the spatial
scope relates to the size of the interconnected transmission grids. Typically, for
a high spatial resolution to be feasible, some simplifications in the technological
system details need to be done. As mentioned earlier, electricity is produced by
different electricity generation technologies, e.g. coal power, hydropower, wind



8 2. The Electricity system and modelling

power etc. The production capacity, measured in GW, determines an upper
limit for how much electricity can be produced during a time instant. Instead
of looking at separate power plants, assuming an aggregated capacity in each
region will cause a loss of some system detail, but reduce the problem size
significantly. Previous work by Göransson (2014) has, however, shown that the
loss is marginal for the total system cost. The author also showed that the loss
is marginal for the average full load hours for each electricity production type,
including wind power. In terms of technological system details, besides using
aggregated capacity, system details typically vary with the constraints included
in the model. For example, using different types of storages such as batteries
or hydrogen, which connect several time steps with each other, increases the
model complexity. Also, hydropower connects over several time steps and
is in that sense similar to storage constraints. Another complicating feature
is caused by including thermal cycling in the modelling since this typically
is modelled by integer variables (that are also connected over time). As will
be seen in Section 3.1, however, this can be linearized to reduce complexity
(Weber, 2005).

2.3 Variations in the electricity system

The variation of electricity demand is regular and related to our behavior as
consumers. It can be divided into three main categories: seasonal variations,
weekly variations, and diurnal variations. The seasonal variations has an
annual cycle, where the demand varies throughout the year. In the northern
European countries, the demand is higher during the darker and colder seasons
due to electric heating, and lower in the warmer seasons when heating is not
necessary. On the other hand, in southern Europe, the demand is higher during
the summer months due to the need of air conditioning in buildings. Typically,
less electricity is used during the nights compared to the days, and thus the
demand also follows a diurnal cycle. However, the electricity use pattern on
weekends compared to workdays also differs and therefore a weekly cycle
exists. Figure 2.2 shows the electricity demand variations according to the
described cycles.

Traditionally, the electricity demand (usually referred to as load) is divided
up in three different groups: base load, intermediate load, and peak load. Fig-
ure 2.3 demonstrates a load duration curve, where the load in a region has
been sorted over all the hours of the year, from highest to lowest demand.
The base load is consistent throughout the year, and typically the electricity
production technologies that satisfy it run at full capacity at all hours. These
production technology types generally have high investment costs, but low
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(a) Diurnal variations of the electricity demand in region in Sweden.

(b) Weekly variations of the electricity demand in region in Sweden.

(c) Seasonal variations of the electricity demand in Sweden.

Figure 2.2: Load variations on different time scales.
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Figure 2.3: A load duration curve to illustrate how base, intermediate and peak load
are used in the electricity system. The curve corresponds to the annual load, sorted
according to the size of the load.

running costs. Examples include nuclear power and steam-engined power
run by fossil fuels (e.g. coal). The peak load period has a significantly higher
demand compared to the average load level and is fulfilled by for example gas
turbines, that is, technologies that are expensive to operate but have compar-
atively low investment costs. Intermediate load corresponds to the period in
between base load and peak load, and can for example be covered by combined
cycle gas turbines, which combine several heat engines that all use the same
source of heat, e.g. natural gas or biogas. The engines then work in tandem
which allows them to extract heat energy from each other. These types of
plants are better at following the load curve changes compared to base load
production technologies.

The electricity system has historically been designed to meet the above men-
tioned load variations. However, variable renewable energy (VRE) sources
such as wind and solar power are intermittent and non-dispatchable. This
means that they are not always available as they depend on factors which can
not be controlled. These factors include the weather and the location of wind
turbines and solar panels, and thus different regions have different conditions.
Nonetheless, while the wind variations are irregular, they can under some con-
ditions still be fairly slow. If a large geographical scope (e.g. a group of wind
farms, or all wind turbines in a country) is considered, there can be several
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days of high wind power production and then several days of low wind power
production (Holttinen et al., 2009). Hence, a key strategy to manage variations
from wind power includes a large geographical scope, and thus also trade
between regions to smoothen the effect of wind variability.

Figure 2.4: Example of wind power production at different penetration levels in a load
curve during a week.

Figure 2.4 illustrates an example of the wind power production at different
wind penetration levels during a week. For the lower level case, wind power
will start to compete with base load production during times when the electric-
ity demand is low. As discussed earlier, it is expensive to modify the output for
base load production and thus wind power production will likely be curtailed
during those hours. This means that the output from wind power production is
deliberately decreased (even though more could have been produced) in order
to balance the electricity supply and demand. If instead the case when the
wind penetration level is higher is considered, there will be situations when the
wind power production meets a larger share of the demand. In some situations,
it could meet the entire demand for longer time periods. This implies that there
are longer periods when other electricity production, such as base load, is not
needed in the electricity system. Curtailing all the wind power production
would in that case be too costly, and the alternative is then to turn off the base
load production during these time periods. Furthermore, for the shorter time
periods when demand can’t be met entirely by wind power production only, it
is not favorable to use base load production technologies. The reason for this is
that since base load production is costly to invest in, and also expensive to start
up, it is not cost-efficient to only use it during bursts of a few days a time. In-
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stead, during these time periods intermediate and peak load production types
will likely be used, since they better complement the wind power production
pattern. However, to manage variations such as these in long and short term
requires the solution of an optimization problem which should be captured by
the electricity system investment models.

Solar power, just like the load, has regular variations that directly relates to
the sunlight such that the production is highest in the middle of the day. The
amplitude of the solar power production varies between days, but the general
production pattern coincides with the demand curve; see Figure 2.5. This
means that for low solar power penetration levels, it can replace peak load
production. However, for higher penetration levels the solar power starts
to compete with the base load production during the day. It would not be
cost-efficient to only run base load production during the night, and therefore
intermediate load production types would typically be used for these time
periods. Moreover, the solar peak production is more narrow than the demand
peak. This implies that when the sun is setting in the afternoon, the demand
for electricity is still high and thus other electricity production need to cover
that peak demand.

Figure 2.5: Example of solar power production at different penetration levels in a load
curve during a week.

The operation of power plants in response to variations is a variation manage-
ment strategy. It should be noted, however, that other variation management
strategies for VRE integration exist. Typically, these can be found on the de-
mand side, the production side, and by the use of storage units. In terms of
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storage, batteries or hydrogen storage can be used to store electricity when
production is high, and discharged at a later point when production is lower.
For example, storage units could be used to complement solar power to man-
age the peak demand in the afternoons. This flexibility also helps to avoid
curtailing electricity since excess electricity from VRE production can be stored
for later use. On the demand side, load shifting can be used to shift some of the
load from hours with high demand to hours when there is less demand. This
could for example be smart charging of electric vehicles, which means that the
vehicles are charged (or discharged during peak load) when it is beneficial to
the system in terms of load and electricity production. Peak load generation
or reduced base load generation are examples of supply side variation man-
agement. Some of the mentioned variation management strategies have been
evaluated by van Ackooij et al. (2021) using multi-objective optimization for
costs and emissions on energy systems comprised of different energy mixes.

In conclusion, incorporating a high share of VRE sources, such as wind or
solar power, into the energy mix requires additional variation management
strategies compared to a system with a low share of VRE sources. For this to
be successful, it is likely necessary to step away from the traditional way of
designing the electricity system.

2.4 Previous work on electricity system modelling

To reduce computation time and computer memory requirements, previous
work on electricity system investment models has typically focused on sim-
plifying the time representation. Ringkjøb et al. (2018) reviewed 75 different
modelling tools used for analysing energy and electricity systems with large
shares of VRE. The authors identify that one of the remaining challenges is
how to represent short-term variability in long-term studies. A methodological
review of strategies to integrate short-term variations is given by Collins et al.
(2017), who discuss methods to improve the time representation in long-term
electricity system investment models that use traditional ways of time rep-
resentation. Pfenninger et al. (2014) review several articles that discuss time
representation for energy system models containing a substantial level of VRE.

Traditional time representation methods for electricity system investment mod-
els typically belong to a family of methods using time slices. Integral time slices
can for example be a single time slice per year or a small set of seasonal and
daily time slices to represent the differences in demand dependent on season,
weekday, or time of day. Time slicing methods that are based on approximating
the joint probability distribution of the load and VRE generation are for exam-
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ple developed by Wogrin et al. (2014) and Lehtveer et al. (2017). Another time
slicing method is the representative days method, suggested by Nahmmacher
et al. (2014), which identifies a number of 24-hour segments based on load and
VRE patterns over a day. Time reduction methods based on these principles
have been implemented and shown promising results for long-term investment
models (see, for example, Mai et al. (2013), Gils (2016), Gerbaulet and Lorenz
(2017), and Frew and Jacobson (2016)) and the methods have been compared
and evaluated by Reichenberg et al. (2018).

However, the integral time slicing methods have traditionally not worked
when considering a larger geographical scope which includes regional trade.
The reason for this is that approximating the joint probability distribution is
challenging since, unlike variations in load, variations in VRE generation do
not follow a common pattern across a wide geographical scope. Thus, the
integral time slicing methods can not properly account for wind and solar
variations in models, in which a large geographical scope is considered. As
discussed in Section 2.3, smoothing effects through trade is an important
variation management strategy for VRE and thus, as is also concluded by
Reichenberg et al. (2018), the integral time slicing method is not ideal for a
multi-node electricity system model with large shares of VRE.

The representative days approach on the other hand can be employed in
network models and therefore incorporate trade (see for example Frew et al.
(2016)). This time representation can also handle short term storage, but not
overnight storage since modelling of storage requires interconnected time
steps. An alternative is to model over longer time periods, i.e. weeks, but this
increases model complexity and thus computation time. Hence, a simplification
in the spatial or technological system detail dimensions might be necessary to
compensate for the increased complexity.



3 Mathematical modelling

The problem studied in this thesis, for which we have developed three mathe-
matical models, consists of minimizing investment and operational costs while
meeting the demand for electricity in a European electricity system. Europe has
here been divided into several regions, chosen according to country borders
and, if existent, infrastructural bottlenecks within the countries; see Figure 3.1.

We assume an aggregated capacity in each region, instead of looking at separate
power plants. Furthermore, a time period stretching from 2020 to 2050 is
studied where we consider both existing production capacity as well as new
investments. The total time period is divided into different investment periods
in order to account for the lifespan of different power plants, i.e. the production
capacity lifespan.

Each region produces electricity (measured in GWh/h) to meet its electricity
demand. For the second and third model, trade along the electricity grid is also
possible between regions. Existing transmission lines are then considered, but
it is also allowed to invest into new transmission capacity. Similar to that of
electricity production capacity, the transmission capacity works as an upper
limit for the electricity transmission.

Thermal cycling is included as previous work has shown that is has a substan-
tial impact on the cost-optimal electricity system composition (Göransson et al.,
2017). Furthermore, to keep the model linear, thermal cycling is accounted for
using a relaxed unit commitment approach as described by Weber (2005). This
method is explained in detail in Section 3.1, but to briefly summarize, variables
are used to represent active (hot) production capacity in thermal power plants
that is available for electricity generation in each time step. Moreover, there are
some special constraints for renewable energy production, such as production
and capacity limits from weather, competing land use, and population density.
Hydropower has constraints for ramp rate, i.e. the rate at which the electricity
output can increase or decrease, and balance constraints for electricity storage.

15



16 3. Mathematical modelling

Figure 3.1: The different regions in Europe used in the model

Lastly, we should account for the total system carbon dioxide emissions. This
can be represented by a hard constraint, or by using a tax (and thus penalize
carbon-emitting technologies) in the objective. For reasons relating to the solu-
tions methods, we have chosen to use the tax representation; see also Chapter 7
for further discussion regarding this.
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3.1 A simple electricity system investment model

First, a basic and simplified model is considered. This linear model only
considers one region and does not allow any import and export of electricity
from other regions. The sets used in this model are listed in Table 3.1.

Table 3.1: The index sets used in the basic model

symbol representation member
P := Pthermal ∪ Pren; electricity generation technolo-

gies
p

Pthermal ⊂ P ; thermal power technologies p

Pren ⊂ P ; renewable technologies p

Pwind ⊂ Pren; wind technologies p

Phydro ⊂ Pren; hydropower technologies p

S := {1, . . . , S} ⊂ I; new capacity investment years s

T := {1, . . . , T}; time steps within a year t

Tstart(p) ⊂ T ∪ {0}; hours in the start-up interval
for technology p ∈ P

t

I := {S − I + 1, . . . , S}; investment periods, where I =
|I|

i

IP
active(p, s) := I ∩ {s− Up, . . . , s}; investment periods for each

technology type p ∈ P with
lifespan Up that are active at
year s ∈ S

i

The set P represents all the electricity production technologies, e.g. hydro-
power, wind power, nuclear power, etc. This set contains thermal power
technologies, Pthermal, such as nuclear power and waste incineration plants. It
also contains renewable electricity generation technologies, and in this model
namely Pwind and Phydro. The set of renewables are then defined as Pren :=
Pwind ∪ Phydro. The modelling years are given by S, and the set of time steps
within a year is denoted T . Since thermal cycling is considered in this model,
Tstart(p), is the set of hours in the start-up interval for technology p ∈ P . This
model uses the concept of investment periods, denoted I, which are used to
know at what year an investment in production capacity was made. This is
relevant for two reasons: firstly, the model covers several years. Hence, if an
investment in technology type p is made in year s, it should not be possible to
use that invested capacity prior to the year s. Secondly, since each production
technology has a lifetime (dependent on the specific technology type p ∈ P),
then in order to know for how long that invested capacity can be used it is
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crucial to know when the investment was made. Therefore, the set IP
active(p, s)

contains the investment periods for each technology type p ∈ P (with its own
lifespan Up) that are active at year s ∈ S . Note that S ⊂ I holds.

A detailed list of the set elements is presented in Chapter 5, and a full nomen-
clature list is given in Appendix A.1. Note that some sets, variables, and
parameters in Appendix A.1 are non-existent in this model. Additionally, the
indices for regions are not present in this model.

The mathematical constraints and objective for the problem are described below.
All the decision variables are subject to non-negativity constraints.

Meeting the demand

We begin by introducing the decision variables

xpist = generated electricity of technology type p ∈ P in year s ∈ S

for investment period i ∈ IP
active(s, p) and time step t ∈ T ,

that are measured in GWh/h. Let dst denote the demand in year s ∈ S at time
step t ∈ T . The constraints

∑

p∈P

∑

i∈IP

active(s,p)

xpist ≥ dst, s ∈ S, t ∈ T , (3.1.1)

imply that the produced electricity meets the demand during all modelled time
steps and years.

Generation limits

Variables are needed to represent the capacity installed in the system. Thus,
define the decision variables

ypi = installed capacity of technology type p ∈ P in investment period i ∈ I,

measured in GW. Let bgen
pi be the existing production capacity of production

type p ∈ P for investment period i ∈ I \ S. The investment variables ypi are
fixed such that no new investments can be made prior to "now", according to

ypi = b
gen
pi , p ∈ P, i ∈ I \ S. (3.1.2)
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Thermal cycling

The idea of thermal cycling is that for thermal power plants, the capacity that
has been taken out of operation has a minimum down-time that corresponds
to the time it takes to start-up the capacity before it can generate electricity
once again. Furthermore, and more importantly, the start-up cost for a unit
is typically high and thermal cycling constraints can be used to capture this
property. To model this, let us begin by defining two new types of decision
variables:

zpist = available hot capacity of technology type p ∈ Pthermal in year s ∈ S

for investment period i ∈ IP
active(s, p) and time step t ∈ T ;

z+pist = started hot capacity of technology type p ∈ Pthermal in year s ∈ S

for investment period i ∈ IP
active(s, p) from time step t− 1 ∈ T

to time step t ∈ T ,

measured in GWh/h. The capacity that is currently up and running in a thermal
power plant is referred to as hot capacity or available capacity; see Figure 3.2a. The
electricity generation should never exceed the available hot capacity. Likewise,
it is required to generate a minimum level of electricity depending on the
available hot capacity in order for it to stay hot. Let φp denote the share
corresponding to the minimum load level. This yields the constraints

φpzpist ≤ xpist ≤ zpist, i ∈ IP
active(s, p), p ∈ Pthermal, s ∈ S, t ∈ T . (3.1.3)

Furthermore, to connect the started hot capacity to the available hot capacity,
for i ∈ IP

active(s, p), p ∈ Pthermal, and s ∈ S the following constraints are used:

z+pist ≥

{

zpist − zp,i,s,t−1, t ∈ T \ {1},

zpist − zpisT , t = 1.
(3.1.4)

The difference in available hot capacity between the time steps t and t− 1 will
then correspond to the started hot capacity. It is costly to start new capacity
and hence the variable z+pist is penalized in the objective function. Thus, z+pist
will be zero if zpist ≤ zp,i,s,t−1.

Moreover, tp ∈ Tstart(p), p ∈ Pthermal, hours back in time, the started hot capacity
is limited by the available hot capacity zpist. This yields, for i ∈ IP

active(s, p),
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p ∈ Pthermal, s ∈ S , and t ∈ T , the constraints

∑

j∈IP

active(s,p)

ypj − z+pist ≥

{

zp,i,s,t−tp , tp ∈ Tstart(p) \ {t, . . . , T},

zp,i,s,T+t−tp , tp ∈ Tstart(p) \ {0, . . . , t− 1},
(3.1.5)

which linearize the start-up constraints that are more intuitively modeled as
integers. The idea is that capacity that has been taken out of operation has
a minimum down-time before it can be started again. As a simple example,
consider Figure 3.2b. Here, the minimum down-time is three; thus we look at
the hot capacity three time steps back. The amount of capacity that is available
for start-up is capacity that has not been used in any of these time steps. The
hot capacity is the largest for step t− 2; therefore it will limit z+t the most.

(a) Hot capacity is limited by the total
amount of installed capacity in time step t.

(b) The minimum down-time for hot ca-
pacity limits the possible start-up capacity.

Figure 3.2: Illustrations for thermal cycling.

Renewables

Policies in some countries require that the total renewable electricity generation
(wind and hydropower) should stay above some minimum level. Let fs denote
this level for the year s ∈ S. Then, this requirement is modelled by the
constraints

∑

p∈Pren

∑

i∈IP

active(s,p)

∑

t∈T

xpist ≥ fs, s ∈ S. (3.1.6)

There is an upper limit on production of wind power due to weather and
climate. Let θpt be a profile, given as share of total installed capacity, for
technology p ∈ Pwind at time step t ∈ T . Then, this limit is modelled as

xpist ≤ θpt
∑

j∈IP

active(s,p)

ypj , i ∈ IP
active(s, p), p ∈ Pwind, s ∈ S, t ∈ T . (3.1.7)
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Not all areas are suitable for installation of wind farms since wind speed and
terrain varies across the regions. Thus, for reasons regarding land exploitation,
there is an upper limit on the possible investments in wind capacity; let Wp be
that upper limit for wind type p ∈ Pwind. Then, this limit is modelled as

∑

i∈I

ypi ≤Wp, p ∈ Pwind. (3.1.8)

Define the decision variables

wst = hydropower storage in year s ∈ S at time step t ∈ T ,

given in GWh. Let gt denote the inflow into the reservoirs at time step t ∈ T .
The inflow is assumed to be the same over the years. For p ∈ Phydro and s ∈ S ,
the hydropower balance constraint is then modelled as

wst + gt − τ
∑

i∈IP

active(s,p)

xpist ≥

{

ws,t+1, t ∈ T \ {T},

ws1, t = T,
(3.1.9)

where τ [h] denotes the length of the time step. In this model presentation,
τ = 1 for simplicity but still necessary to include for the dimension analysis.

The hydropower storage has an upper limit denoted H, modelled as

wst ≤ H, s ∈ S, t ∈ T . (3.1.10)

The production level for hydropower can’t change too quickly. Thus, ramping
rate constraints are required. Let δinc and δdec denote shares corresponding
to the maximum change level. The constraints (3.1.11) and (3.1.12) imply an
upper limit on the rate of increase and decrease, respectively, of the storage
level. For i ∈ IP

active(s, p), p ∈ Phydro, and s ∈ S , thus

(1 + δinc)xpist ≥

{

xp,i,s,t+1, t ∈ T \ {T},

xpis1, t = T ;
(3.1.11)

(1 + δdec)xpist ≤

{

xp,i,s,t+1, t ∈ T \ {T},

xpis1, t = T.
(3.1.12)
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Lastly, no new investments in hydropower capacity are allowed. Thus,

yps = 0, p ∈ Phydro, s ∈ S. (3.1.13)

Emissions

The emissions arise from running the power plants (fuel etc.), but also from
start-ups of plants since fuel is needed for this. Furthermore, there are extra
emissions when not running on full capacity, due to reduced efficiency. Let epi
denote the emissions released, measured in CO2/MWh, by technology type
p ∈ P in investment period i ∈ I . Let e+pi and ẽpi denote the emissions released
from start-ups and from running on part-load, respectively, for technology type
p ∈ Pthermal in investment period i ∈ I. Let the auxiliary variable etot

st denote
the total emissions for year s ∈ S and time step t ∈ T , which is then expressed
as

etot
st :=

∑

p∈P

∑

i∈IP

active(s,p)

epixpist +
∑

p∈Pthermal

∑

i∈IP

active(s,p)

(

e+piz
+
pist + ẽpi(zpist − xpist)

)

.

(3.1.14)

Objective

The objective is to minimize the total system costs. The sum (3.1.15a) considers
the investment costs in electricity production technologies. Here, cinvtech

ps is the
investment cost (with annuity costs included) for technology type p ∈ P in year
s ∈ S, and comf

p is the fixed operation and maintenance costs for technology
type p ∈ P . The sum (3.1.15b) considers the costs of electricity production,
where crun

pi are the run costs for technology type p ∈ P where the investment
was made in period i ∈ I. The sum (3.1.15c) describes the additional costs for
thermal power technology types p ∈ Pthermal. Specifically, c+ps is the start-up
cost for hot capacity in year s ∈ S , and c̃ps is the additional cost for running on
part-load capacity in year s ∈ S. Lastly, the sum (3.1.15d) describes the costs
for carbon dioxide emissions. The objective function is defined as

∑

p∈P

∑

s∈S

(cinvtech
ps + comf

p )yps (3.1.15a)

+
∑

p∈P

∑

i∈IP

active(s,p)

∑

s∈S

∑

t∈T

crun
pi xpist (3.1.15b)



3.2. Full-scale electricity system investment model 23

+
∑

p∈Pthermal

∑

i∈IP

active(s,p)

∑

s∈S

∑

t∈T

(

c+psz
+
pist + c̃ps(zpist − xpist)

)

(3.1.15c)

+
∑

s∈S

∑

t∈T

cCO2
s etot

st . (3.1.15d)

Note that for the investment costs in (3.1.15a), we only consider the investment
periods that coincide with the years s ∈ S. Thus, any costs for prior invest-
ments are not counted. In (3.1.15b) and (3.1.15c), the total costs cover all active
investment periods.

We assume that the total costs for investments and operation of a power plant
is evenly distributed across all of its hours of operation, and the formula for
present value of an annuity is used to calculate the annualized investment cost.

3.2 Full-scale electricity system investment model

For the full-scale electricity system investment model, the basic model is used
as a foundation and built upon to include several regions, compared to the
single region in the basic model. With this comes the option to import and
export electricity, and thus the added model constraints describe a transmis-
sion and load balance for the electricity grid in the form of network balance
constraints. Hence, the problem is represented using a linear network model
with additional side constraints.

The sets used in this model are listed in Table 3.2. It contains some additional
sets compared to the basic model. The set L represents all the countries that
the different regions in the model belong to. The different regions are defined
by the set R, and the set R(l) contains all regions that belong to country
l ∈ L. Transmission lines between regions are given by the set A ⊂ R × R.
Thus, from region q ∈ R to region r ∈ R, there exists a transmission line if
(q, r) ∈ A. The model uses different types of cables for transmission, and they
are given by the set K. Similar to the set of active investment periods for the
electricity generation technologies, a set of active periods for the transmission
technologies is needed. This set is denoted IK

active(s), and it contains the active
investment periods at year s ∈ S. It is assumed that the different types of
transmission technologies have a life span that outlives the model years, and
therefore the set is not dependent on the transmission types k ∈ K.

References to the data are discussed in Chapter 5, and a full nomenclature list
is given in Appendix A.1. The mathematical constraints and objective for the
problem are described below. All the decision variables are restricted to be
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non-negative.

Table 3.2: The index sets used in the full-scale model

symbol representation member
L countries l

R regions r

R(l) ⊂ R; regions within a country l ∈ L r

A ⊂ R×R; transmission lines between re-
gions

q, r

K technologies for transmission k

P := Pthermal ∪ Pren; electricity generation technolo-
gies

p

Pthermal ⊂ P ; thermal power technologies p

Pren ⊂ P ; renewable technologies p

Pwind ⊂ Pren; wind technologies p

Phydro ⊂ Pren; hydropower technologies p

S := {1, . . . , S} ⊂ I; new capacity investment years s

T := {1, . . . , T}; time steps within a year t

Tstart(p) ⊂ T ∪ {0}; hours in the start-up interval
for technology p ∈ P

t

I := {S − I + 1, . . . , S}; investment periods, where I =
|I|

i

IP
active(p, s) := I ∩ {s− Up, . . . , s}; investment periods for each

technology type p ∈ P with
lifespan Up that are active at
year s ∈ S

i

IK
active(s) := {S − I + 1, . . . , s}; investment periods that are ac-

tive at year s ∈ S
i

Transmission and load balance

The first constraint describes a transmission balance for the grid. Introduce the
two variables, both measured in GWh/h,

xprist = generated electricity of technology type p ∈ P in region r ∈ R at

year s ∈ S for investment period i ∈ IP
active(s, p) and time step t ∈ T ;

vkqrst = electricity traded with transmission type k ∈ K from region q ∈ R to

region r ∈ R, such that (q, r) ∈ A, at year s ∈ S and time step t ∈ T .
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Let drst denote the electricity demand in region r ∈ R at year s ∈ S and time
step t ∈ T . Then for each r ∈ R, s ∈ S and t ∈ T , the demand fulfillment is
formulated as
∑

p∈P

∑

i∈IP

active(s,p)

xprist +
∑

k∈K

∑

q:(q,r)∈A

vkqrst −
∑

k∈K

∑

j:(r,j)∈A

vkrjst ≥ drst. (3.2.1)

Thus, all electricity generation and import to a certain region during a certain
year and time step, minus the export has to meet the demand for electricity.

The transmission is limited by the transmission capacity, measured in GW. It
is possible to invest into new capacity, but there is some capacity previously
installed. Let btra

kqr be a parameter which denotes the installed transmission
capacity on transmission line (q, r) ∈ A of transmission type k ∈ K. Define

ukqri = total investments in transmission capacity for transmission type

k ∈ K from region q to region r, (q, r) ∈ A, at investment period i ∈ I.

These variables are then limited by the existing capacity such that

ukqri = btra
kqr, k ∈ K, (q, r) ∈ A, i ∈ I \ S. (3.2.2)

Furthermore, the transmission capacity for arcs (q, r) ∈ A and (r, q) ∈ A should
be the same, modelled as

ukqri = ukrqi, k ∈ K, (q, r) ∈ A, i ∈ I. (3.2.3)

This assumes that transmission is always possible in both directions, but for
each solution trade will only occur in one direction due to it otherwise being
inefficient. The directed arcs are defined such that if (q, r) ∈ A then (r, q) ∈ A.

The transmission should not exceed the total transmission capacity—both new
and old—modelled as

vkqrst ≤
∑

i∈IK

active(s)

ukqri, k ∈ K, (q, r) ∈ A, s ∈ S, t ∈ T . (3.2.4)

Generation limits

Define the decision variables

ypri = installed capacity of technology type p ∈ P in region r ∈ R

at investment period i ∈ I.
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Let bgen
pri be existing production capacity, with p ∈ P , r ∈ R and i ∈ I. Similar

to the basic model, fix the investment variable ypri to existing capacity for
previous years, as

ypri = b
gen
pri , p ∈ P, r ∈ R, i ∈ I \ S. (3.2.5)

Thermal cycling

As in the basic model, we work with continuous variables to represent hot
capacity and start-up constraints. Introduce the decision variables

zprist = available hot capacity of technology type p ∈ Pthermal in region r ∈ R

at year s ∈ S for investment period i ∈ IP
active(s, p) and time step

t ∈ T ,

z+prist = started hot capacity of technology type p ∈ Pthermal in region r ∈ R

at year s ∈ S for investment period i ∈ IP
active(s, p) from time step

t− 1 ∈ T to time step t ∈ T ,

both measured in GWh/h. The electricity should never exceed the available
hot capacity, and there is a minimum level of necessary electricity generation
depending on hot capacity. Let φp denote some share corresponding to the
minimum load level. This yields the constraints

φpzprist ≤ xprist ≤ zprist, i ∈ IP
active(s, p), p ∈ Pthermal, r ∈ R, s ∈ S, t ∈ T .

(3.2.6)

Furthermore, for p ∈ Pthermal, i ∈ IP
active(s, p) and s ∈ S the started hot capacity

is connected to the available hot capacity by the constraints

z+prist ≥

{

zprist − zp,r,i,s,t−1, t ∈ T \ {1},

zprist − zprisT , t = 1.
(3.2.7)

Like in the basic model, z+prist is penalized in the objective function and will
thus be zero if zpist ≤ zp,i,s,t−1.

For p ∈ Pthermal, r ∈ R, i ∈ IP
active(s, p), s ∈ S, t ∈ T , the minimum down-time

constraints are modeled as

∑

j∈IP

active(s,p)

yprj − z+prist ≥

{

zp,r,i,s,t−tp , tp ∈ Tstart(p) \ {t, . . . , T},

zp,r,i,s,T+t−tp , tp ∈ Tstart(p) \ {0, . . . , t− 1}.
(3.2.8)
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Renewables

As stated in the basic model, policies in some countries require that the total
renewable electricity generation (wind and hydropower) stays above some
minimum level. Assume this level is denoted fls, so that each country l ∈ L
has its own level for year s ∈ S . Then, this constraint is expressed as

∑

p∈Pren

∑

r∈R(l)

∑

i∈IP

active(s,p)

∑

t∈T

xprist ≥ fls, l ∈ L, s ∈ S. (3.2.9)

There is an upper limit on wind power production due to weather and climate.
Let θprt be a profile, given as share of total installed capacity, for technology
p ∈ Pwind in region r ∈ R at time step t ∈ T . Then, the limit is modelled as

xprist ≤ θprt
∑

j∈IP

active(s,p)

yprj , i ∈ IP
active(s, p), p ∈ Pwind, r ∈ R, s ∈ S, t ∈ T .

(3.2.10)

The upper limit on possible investments in wind capacity for wind type
p ∈ Pwind in region r ∈ R is denoted Wpr. The limit is then modelled by
the constraints

∑

i∈I

ypri ≤Wpr, p ∈ Pwind, r ∈ R. (3.2.11)

Introduce the decision variable

wrst = hydropower storage in region r ∈ R at year s ∈ S at time step t ∈ T ,

measured in GWh. Furthermore, let grt be the inflow into the reservoirs in
region r ∈ R at time step t ∈ T , assumed to be the same over the years.
The hydropower balance constraint is then, for p ∈ Phydro, r ∈ R and s ∈ S,
modelled as

wrst + grt − τ
∑

i∈IP

active(s,p)

xprist ≥

{

wr,s,t+1, t ∈ T \ {T},

wrs1, t = T.
(3.2.12)

As in the basic model, τ = 1 [h] represents the time step length.

The upper limit for the hydropower storage, Hr for each r ∈ R, is modelled as

wrst ≤ Hr, r ∈ R, s ∈ S, t ∈ T . (3.2.13)
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Let δinc
r and δdec

r denote the maximum ramping rate increase and decrease,
respectively. The ramping rate constraints are then given by

(1 + δinc
r )xprist ≥

{

xp,r,i,s,t+1, t ∈ T \ {T},

xpris1, t = T.
(3.2.14)

(1 + δdec
r )xprist ≤

{

xp,r,i,s,t+1, t ∈ T \ {T},

xpris1, t = T.
(3.2.15)

Finally, it is not allowed to invest in new hydropower capacity. Therefore,

yprs = 0, p ∈ Phydro, r ∈ R, s ∈ S. (3.2.16)

Emissions

Similar to the basic model, let epri denote the emissions released, measured in
CO2/(GWh/h), by technology type p ∈ P in region r ∈ R for capacity made
in investment period i ∈ I. Let e+pri and ẽpri denote the emissions released
from start-ups and from running on part-load, respectively, for technology type
p ∈ Pthermal in region r ∈ R and investment period i ∈ I. Lastly, let etot

st denote
the auxiliary variable that represents the total released emissions for year s ∈ S
and time step t ∈ T . The definition constraint for the total system emissions
released, for every s ∈ S and t ∈ T , is

etot
st :=

∑

r∈R

(

∑

p∈P

∑

i∈IP

active(s,p)

eprixprist

+
∑

p∈Pthermal

∑

i∈IP

active(s,p)

(

e+priz
+
prist + ẽpri(zprist − xprist)

)

)

.

(3.2.17)

Objective

Similar to the basic model, the objective is to minimize the total system costs.
The sum (3.2.18a) considers the investment costs in electricity production tech-
nologies, with cinvtech

ps representing the investment cost (with annuity costs
included) for technology type p ∈ P in year s ∈ S and comf

p is the fixed op-
eration and maintenance costs for technology type p ∈ P . The sum (3.2.18b)
considers the costs of electricity production, with crun

pri denoting the run costs
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for technology type p ∈ P in region r ∈ R, where the investment is done in
investment period i ∈ I. The sum (3.2.18c) describes the additional costs for
thermal power technology types p ∈ Pthermal using c+prs as the start-up cost for
hot capacity in region r ∈ R and year s ∈ S, and c̃prs as the additional cost
for running on part-load capacity, and the sum (3.2.18d) corresponds to the
total system emissions costs. The sum (3.2.18e) corresponds to the investment
costs in new transmission capacity, with cinvtra

kqr being the investment cost in
transmission capacity of type k ∈ K between regions (q, r) ∈ A. This cost
parameter is halved compared to the real cost in order to compensate for the
network representation of using directed arcs, while in reality electricity is sent
in either direction on the same transmission line. Finally, the sum (3.2.18f) cov-
ers the transmission cost of sending electricity using transmission technology
k ∈ K on transmission line (q, r) ∈ A. The cost parameter is denoted ctra

kqr. The
objective function to minimize is then given by

∑

s∈S

(

∑

p∈P

∑

r∈R

(

cinvtech
ps + comf

p

)

yprs (3.2.18a)

+
∑

p∈P

∑

r∈R

∑

i∈IP

active(s,p)

∑

t∈T

crun
prixprist (3.2.18b)

+
∑

p∈Pthermal

∑

r∈R

∑

i∈IP

active(s,p)

∑

t∈T

(

c+prsz
+
prist + c̃prs(zprist − xprist)

)

(3.2.18c)

+
∑

t∈T

cCO2
s etot

st (3.2.18d)

+
∑

k∈K

∑

(q,r)∈A

cinvtra
kqr ukqrs (3.2.18e)

+
∑

k∈K

∑

(q,r)∈A

∑

t∈T

ctra
kqrvkqrst

)

. (3.2.18f)

3.3 Hours-to-Decades model

The major difference between the full-scale model presented in Section 3.2 and
the Hours-to-Decades model is that the latter model 1) includes solar power,
hydrogen storage, and batteries, 2) disregards explicit yearly connections and
instead links the years implicitly by adding operational costs to the objec-
tive, and 3) is decomposed into 2-week segments, within each of which the
chronology is retained, providing 26 separate submodels. The purpose of this
decomposition is to take advantage of the possibility to solve the submodels
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in parallel, which thus would shorten the computing times. The Hours-to-
Decades model is solved by the use of a heuristic algorithm, i.e. a consensus loop
which enables information to be exchanged between the submodels. Each sep-
arate subproblem represents the problem of meeting the demand for electricity
while minimizing investment and operational costs in its 2-week segment. In
the consensus loop, information from the solutions is gathered in capacity–cost
curves in which the capacity invested in all 2-week segments have the lowest
cost, while additional capacity invested in a subset of the segments is more
expensive. The smaller the subset of segments, the more expensive the capacity.
The solution process is iterated until there is consensus, i.e. until the capacity–
cost curves are unchanged between iterations. The methodology for solving
this model will be further discussed in Chapter 4, while the remainder of this
section will focus on the electricity system investment model.

Table 3.3 provides a list of the sets used in this model. The notation here differs
from the previous two models as it was originally primarily aimed at an energy
system modelling audience.

The set I is the set of all regions. The set P contains electricity generation
technologies Pgen := Pwind ∪ P therm ∪ Psolar, i.e. wind power, thermal power,
and solar power. It also contains Pbat, Pelectrolysis, and Phydrogen, which are
the sets of battery technology, electrolyzer technology, and hydrogen storage
technology, respectively. The set Q is the set of all transmission technologies,
which are the same as in the full-scale model. The set S := {1, . . . , S} contains
all 2-week segments, where S = 26. The set of time steps is denoted Ts :=
{(s− 1)T + 1, . . . , sT} for s ∈ S. The model uses thermal cycling constraints
similar to the previous models, and therefore Kp denotes the set of hours in
the start-up interval for technology p ∈ Pthermal. The set of cost classes R are
calculated by the cost-capacity curves in the consensus loop, and are used to
determine the cost of an investment.

Table 3.3: The index sets used in the Hours-to-Decades model

symbol representation unit
I set of all regions i, j

P := Pbat ∪Pelectrolysis ∪Phydrogen ∪Pgen; set of all tech-
nology aggregates

p

Pbat set of all battery technologies p

Pelectrolysis set of all electrolyzer technologies p

Phydrogen set of all hydrogen storage technologies p

Pgen := Pwind ∪ P therm ∪ Psolar; set of all electricity gener-
ation technologies

p
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Pwind set of all wind technologies p

P therm set of all thermal technologies p

Psolar set of all solar technologies p

Q set of technologies for transmission q

S := {1, . . . , S}; set of all 2-week segments (typically,
S = 26)

s

Ts := {(s− 1)T + 1, . . . , sT}; set of all time steps in the
2-week segment s ∈ S

t

Kp := {0, . . .}; set of hours in the start-up interval for
technology p ∈ Pthermal

k

R set of cost classes, i.e. the steps in the cost–supply
curve

r

A list of the set elements and a full nomenclature list is given in Chapter 5
and Appendix A.2, respectively. The constraints and objective function for the
model are given below.

Network balance and generation limits

Define the decision variables

wipr = installed electricity generation and storage capacity in technology

p ∈ P in region i ∈ I and cost class r ∈ R,

hijqr = installed transmission capacity between regions i ∈ I and j ∈ I \ {i},

using transmission technology q ∈ Q in cost class r ∈ R.

The consensus loop to be described in Chapter 4 computes cost class potentials,
denotedM e

ipr andMh
ijqr, which acts as upper limit for the respective investment

variables. This yields the constraints

wipr ≤M e
ipr, i ∈ I, p ∈ P, r ∈ R, (3.3.1)

hijqr ≤Mh
ijqr, i ∈ I \ {j}, j ∈ I, q ∈ Q, r ∈ R. (3.3.2)



32 3. Mathematical modelling

Introduce the decision variables

gipt = electricity generation in region i ∈ I of production type p ∈ Pgen

during time step t ∈ Ts, s ∈ S ,

gipt = energy storage in region i ∈ I in battery type p ∈ Pbat

during time step t ∈ Ts, s ∈ S ,

gipt = hydrogen storage in region i ∈ I in battery type p ∈ Phydrogen

during time step t ∈ Ts, s ∈ S ,

eijt = exported electricity from region i ∈ I to region j ∈ I \ {i}

in time step t ∈ Ts, s ∈ S ,

b
charge
ipt = charging of battery technology p ∈ Pbat in region i ∈ I and time

step t ∈ Ts, s ∈ S ,

b
discharge
ipt = discharging of battery technology p ∈ Pbat in region i ∈ I and

time step t ∈ Ts, s ∈ S .

Let dhydrogen
it denote the electricity consumption of the electrolyzer. The demand

for electricity, Dit, must be met in all regions at all times. This is expressed, for
i ∈ I and t ∈ Ts, s ∈ S , by the constraints

∑

p∈Pgen

gipt ≥ Dit + d
hydrogen
it +

∑

j∈I\{i}

eijt +
∑

p∈Pbat

(

b
charge
ipt − b

discharge
ipt

)

. (3.3.3)

The import and export of electricity are required to be balanced, and the export
may not exceed the installed transmission capacity, as expressed by the relations

−eijt = ejit ≤
∑

m∈I\{i}

∑

q∈Q

∑

r∈R

himqr, i ∈ I\{j}, j ∈ I, t ∈ Ts, s ∈ S, (3.3.4)

e
pos
ijt = |eijt| = max

{

eijt, ejit
}

, i ∈ I\{j}, j ∈ I, t ∈ Ts, s ∈ S. (3.3.5)

Let θipt ∈ [0, 1] be a profile, which is weather-dependent for wind and solar
power but equals 1 for all p ∈ P therm. The level of electricity generation may
not exceed the installed capacity, which is weighted by the weather profile:

gipt ≤
∑

r∈R

wiprθipt, i ∈ I, p ∈ P \ Pelectrolysis, t ∈ Ts, s ∈ S. (3.3.6)
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Battery storage

Flow batteries and lithium ion batteries are amongst the investment options
in the model. An energy balance constraint is needed to manage the storage
of each battery type. The battery storage level during the last time step of
each 2-week segment s ∈ S constrains the battery storage level in the first time
step of the same 2-week segment. Here, gipt is the storage level of the battery,
ηpb

charge
ipt is the charging of the battery where ηp is the efficiency of battery type

p ∈ Pbat, and bdischarge
ipt is the discharging of the battery. For each i ∈ I, p ∈ Pbat

and s ∈ S the constraints are expressed as

gipt + ηpb
charge
ipt − b

discharge
ipt ≥

{

gi,p,t+1, t ∈ Ts \ {sT},
gi,p,t−(T−1), t = sT.

(3.3.7)

Each battery type has an installed storage capacity, and the charging and
discharging of batteries may not exceed this limit:

b
charge
ipt ≤

∑

r∈R

wipr, i ∈ I, p ∈ Pbat, t ∈ Ts, s ∈ S, (3.3.8)

b
discharge
ipt ≤

∑

r∈R

wipr, i ∈ I, p ∈ Pbat, t ∈ Ts, s ∈ S. (3.3.9)

Hydrogen storage

Hydrogen storage uses an electrolysis process, which is based on using electric-
ity to split water into hydrogen and oxygen. This process takes place inside an
electrolyzer. The investments in hydrogen storage are stimulated by introduc-
ing a demand for electricity in hydrogen production for industry. Let Dhydrogen

i

be the industry demand for hydrogen which is evenly distributed over the
year, in region i ∈ I. The hydrogen production in the electrolyzer is given by
ηpd

hydrogen
it for p ∈ Phydrogen, i ∈ I and t ∈ Ts, s ∈ S, where ηp denotes the

efficiency of charging the hydrogen storage. Furthermore, the storage level and
the charging and discharging of the hydrogen storage during the last time step
of the 2-week segment are used to constrain the hydrogen storage level in the
first time step of the same 2-week segment. Thus, for i ∈ I, p ∈ Phydrogen and
s ∈ S , this is modelled as

gipt + ηpd
hydrogen
it −D

hydrogen
i ≥

{

gi,p,t+1, t ∈ Ts \ {sT},
gi,p,t−(T−1), t = sT.

(3.3.10)
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The electricity consumption of the electrolyzer, dhydrogen
it , may not exceed the

installed electrolyzer capacity:

d
hydrogen
it ≤

∑

r∈R

wipr, i ∈ I, p ∈ Pelectrolysis, t ∈ Ts, s ∈ S. (3.3.11)

Wind and solar power

The wind power capacity in technology p ∈ Pwind and region i ∈ I is limited
by the regional resources Aip, which implies an upper bound on wind power
investments:

∑

r∈R

wipr ≤ Aip, i ∈ I, p ∈ Pwind; (3.3.12)

For solar power, there is a total resource constraint for each modeled region
i ∈ I:

∑

r∈R

∑

p∈Psolar

wipr ≤
∑

p∈Psolar

Aip, i ∈ I. (3.3.13)

Thermal cycling

As in the previous models, thermal cycling is here accounted for by applying
the relaxed unit commitment approach suggested by Weber (2005). Let

gactive
ipt = capacity that is active and available for generation in each time

step t ∈ Ts, s ∈ S , in region i ∈ I and within each technology

aggregate p ∈ P therm.

gon
ipt = capacity started in each time step t ∈ Ts, s ∈ S , in region i ∈ I

and within each technology aggregate p ∈ P therm;

The electricity generation should stay below the active capacity in each time
step. Moreover, the minimum load share of the active capacity for technology
p ∈ P therm is given by φp, and the electricity generation is not allowed to be
below this level. Hence, the following inequalities are included in the model:

ξmin
p gactive

ipt ≤ gipt ≤ gactive
ipt , i ∈ I, p ∈ P therm, t ∈ Ts, s ∈ S. (3.3.14)
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As in the previous models, the active capacity is limited in each time step by
the sum of the started capacity and the active capacity in the previous time
step. However, for the first time step of each 2-week segment, except the
first segment, the active capacity in the previous time step is represented by
the active capacity in the last time step of the previous segment, as given by
the previous iteration of the consensus loop (see Chapter 4.4), i.e. by Gactive

i,p,t−1.
Moreover, for the first time step of the first segment (i.e. for t = 1), the active
capacity in the last time step of the last segment is used, as given by the previous
iteration of the consensus loop, i.e. by Gactive

i,p,ST . For i ∈ I and p ∈ P therm, these
relations are modelled by the inequalities

gactive
ipt ≤ gon

ipt +











gactive
i,p,t−1, t ∈ Ts \ {(s− 1)T + 1}, s ∈ S,

Gactive
i,p,t−1, t = (s− 1)T + 1, s ∈ S \ {1},

Gactive
i,p,ST , t = 1.

(3.3.15)

Define the variable

c
cycl
ipt = resulting thermal cycling costs in region i ∈ I for technology

type p ∈ P therm in time step t ∈ Ts, s ∈ S .

As in the previous models, the start-up cost is proportional to the started
capacity gon

ipt, while the part-load cost is proportional to the difference between
the active generation capacity and the generation level. In order to avoid
boundary effects on the last time step of the 2-week segment, we include a
value for the active capacity which is proportional to the solution given in the
previous iteration. This scaling is based on the start-up cost Con

i,p,t+1G
on
i,p,t+1 and

active capacity Gactive
i,p,t+1 paid in the first hour of the following 2-week segment.

For each i ∈ I and p ∈ P therm, these constraints are expressed as

c
cycl
ipt ≥Con

iptg
on
ipt + C

part
ipt

(

gactive
ipt − gipt

)

−Gipt, t ∈ Ts, s ∈ S, (3.3.16)

where

Gipt :=
gactive
ipt

2
·



















0, t ∈ Ts \ {sT}, s ∈ S,
Con

i,p,t+1G
on
i,p,t+1

Gactive
i,p,t+1

, t = sT, s ∈ S \ {S},

Con
ip1G

on
ip1

Gactive
ip1

, t = ST.

(3.3.17)

Hence, if thermal capacity is active in the end of one 2-week segment and also
in the beginning of the subsequent 2-week segment, the start-up cost for that
capacity is shared equally between the segments.
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As explained previously, thermal generation is subject to a start-up time, i.e.
it takes some time for a thermal power plant to heat up before it can deliver
electricity. Thus, in the model, once capacity is deactivated, it cannot become
active again during the interval Kp, which encompasses the time-steps k in the
start-up interval. For i ∈ I and p ∈ P therm, this is expressed as

gon
ipt ≤

∑

r∈R

wipr − gactive
i,p,t−k, t ∈ Ts, s ∈ S, k ∈ Kp \ {t, . . . , sT}. (3.3.18)

Objective

For each 2-week segment s ∈ S, the objective function to be minimized is
expressed as

ctot
s :=

∑

i∈I

∑

p∈P

∑

r∈R

C inv
p λe

iprswipr (3.3.19a)

+
∑

i∈I

∑

p∈P

∑

t∈Ts

(

Crun
pt gipt + c

cycl
ipt

)

(3.3.19b)

+
∑

q∈Q

∑

i∈I

∑

j∈I\{i}

∑

r∈R

Ch-inv
q λh

ijqrshijqr (3.3.19c)

+
∑

i∈I

∑

j∈I\{i}

∑

t∈Ts

C
exp
t e

pos
jit , (3.3.19d)

where (3.3.19a) represents the costs for investments in the different technologies
in the different regions, (3.3.19b) the running costs of the different technologies
in the different regions at all time steps within the 2-week segment, (3.3.19c) the
costs for investments in technologies for transmission of electricity between the
regions, and (3.3.19d) the costs of transmitting electricity between the regions
in each time step within the 2-week segment.

Here, for the cost class r ∈ R and segment s ∈ S, the parameters λe
iprs and

λh
ijqrs represent shares of the investment costs for electricity generating tech-

nologies p ∈ P in region i ∈ I and transmission technologies q ∈ Q between
regions i ∈ I and j ∈ I \ {i}, respectively.
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3.4 Comparison of the different models

The three models presented in Sections 3.1, 3.2, and 3.3, respectively, are very
alike in terms of constraints. There are however some differences, of which
some effect the mathematical structure of the models.

The basic model (Section 3.1) does not consider several regions and therefore
does not include electricity trade. As discussed earlier, trade is a powerful tool
to smoothen the variations from wind power. It is arguably also more realistic
since electricity trade is used within Europe today. However, since the spatial
resolution increases, the problem size does as well and therefore the solution
times grows rapidly. If trade is included (as in the full-scale model; Section 3.2),
the model expands and includes a network structure. Furthermore, variations
from seasons differ between the models. For the Hours-to-Decades model
(Section 3.3), seasonal variability is represented by accounting for all 2-week
segments in a year. However, dimensioning of seasonal storage (i.e. storages
shifting electricity from summer to winter or vice versa) is not possible with
this approach. If storage technologies (besides hydro power) were included
in the basic model and the full-scale model, seasonal storage dimensioning
would not be an issue.

On the other hand, there are some differences which are not important to the
model structure. The Hours-to-Decades model includes solar power technolo-
gies, as well as storage technologies. Expanding the other models to include
solar power technologies do not change their respective model structure since
solar power does not yield any additional constraints. The storage technolo-
gies come with the benefits of demand shifting, and is thus important for
variation management. However, the Hours-to-Decades model uses run-of-
river hydro power technologies, which implies that the electricity generated
by these technologies must be used instantaneously and can’t be saved for
later use. The basic and full-scale models, on the other hand, allow the inflow
water to be stored in reservoirs. Thus, the constraints for hydro power in
these latter models possess the same structure as the storage constraints in the
Hours-to-Decades model.

Moreover, the models serve different purposes and can be used to answer
different questions. The Hours-to-Decades model presents an initial idea of
how to decompose the problem as it gives very promising results and converges
in only a few iterations of the consensus algorithm. The full-scale model acts a
starting point for the relaxation as it contains many of the features necessary
to analyze for a variable renewable electricity integration, but is demanding
to solve for high resolution data. The basic model can be used to explain or
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evaluate the results from the Hours-to-Decades model and the full-scale model.
Furthermore, it can be used to provide feasible solutions for the full-scale
model. If the latter model is decomposed and then solved by a subgradient
algorithm (see Chapter 4), a step length rule such as the Polyak step length
rule (see Section 4.3) is necessary. This step rule requires an upper bound on
the objective function value, which is provided by any feasible solution to the
full-scale model.



4 Mathematical methods and
their theory

The models introduced in Chapter 3 are by nature very large and therefore
practically impossible to solve in reasonable solution times. To counteract this,
different mathematical methods need to be used. For example, the Hours-
to-Decades model in Paper II uses a heuristic where the time dimension is
discretized into 2-week segments, allowing 26 problems to—in theory—be
solved in parallel. Information between these segments is exchanged by the
use of a consensus loop; see Section 4.4. The backside of this method is,
however, that since it is a heuristic, optimality can not be guaranteed. Other
more mathematically robust methods exploit the model structure by using
Lagrangian duality and Lagrangian relaxation, which first came to light by
the seminal work of Held and Karp (1971). Some decomposition methods
relating to electrical energy applications are also covered in Sagastizábal (2012).
Sections 4.1–4.3 discusses the decomposition methods used in Paper I.

4.1 Lagrangian duality and Lagrangian relaxation

Many large optimization problems are structured such that they consist of
several smaller separate problems connected by some overlapping, typically
complicating, constraints. Each separate problem is, however, often more easily
solvable in comparison to the full problem. Lagrangian dual methods, such
as Lagrangian relaxation, can take advantage of this problem structure; see
Guignard (2003).

The idea of Lagrangian relaxation is to relax the connecting constraints such
that the remaining problem is separable into several subproblems. Consider

39
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the linear optimization problem to

minimize z := c⊤x,

subject to g(x) ≤ 0m,

x ∈ X,

(4.1.1)

where c ∈ R
n, x ∈ R

n, g : Rn → R
m, X ⊂ R

n, m, n ∈ Z+. We also assume
that {x ∈ X | g(x)) ≤ 0m} 6= ∅ such that there exists a feasible solution.
Here, g(x) ≤ 0m are connecting constraints while the remaining set x ∈ X is
separable; see Figure 4.1. Define the Lagrangian function L : Rm+n → R such

. . .

Figure 4.1: A block diagonal matrix besides the rows representing the connecting
constraints. Here, the dark area corresponds to the connecting constraints g(x), while
the lighter area is the separable set x ∈ X .

that L(x,π) := c⊤x+ π⊤g(x), using the Lagrangian multipliers π ∈ R
m. The

Lagrangian dual problem is then defined as

max
π≥0

h(π), (4.1.2)

where
h(π) := min

x∈X

L(x,π) = min
x∈X

(

c⊤x+ π⊤g(x)
)

(4.1.3)

and h : Rm → R is denoted the Lagrangian dual function. Here, for some
π ≥ 0m, the problem of minimizing the Lagrangian function L over its first
argument x ∈ X is referred as the subproblem, and since we assumed a block
diagonal structure of the set x ∈ X , this problem is separable.

Let z∗ denote the optimal objective function value in problem (4.1.1). By weak
duality, h(π) ≤ z∗ then holds that for any π ≥ 0; that is, any feasible solution
to the dual problem provides a lower bound on the optimal objective value of
the original problem. Furthermore, any feasible solution x̄ provides an upper
bound for z∗ since the inequality z∗ ≤ z(x̄) holds. Moreover, strong duality
implies that the equality z∗ = h∗ holds.
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4.2 Variable splitting

For the three models presented in Chapter 3, relaxing over the time dimension
is tricky since some variables are time-independent. To illustrate this, we look
at the Example 1.

Example 1. Divide the year into time periods (for example, segments of two
weeks as in the Hours-to-Decades model) over the year such that the set Tn
contains the time steps in a period n ∈ N := {1, ..., N}. Define the variables
xt ∈ Xt ⊆ R+ and y ≥ 0, representing the electricity generation in time step
t ∈ Tn, n ∈ N , and the invested capacity, respectively. Then, consider the
problem to

minimize
y,xt

cinvy +
∑

n∈N

∑

t∈Tn

crun
t xt,

subject to xt ≤ y, t ∈ Tn, n ∈ N ,

xt ∈ Xt, t ∈ Tn, n ∈ N ,

y ≥ 0,

(4.2.1)

where cinv and crun
t , t ∈ Tn, n ∈ N , are investment costs and run costs, re-

spectively. This problem is a simplified version of the models introduced in
Chapter 3. Here, the variable y is complicating the problem since it is time
independent. The constraints xt ≤ y can be relaxed, but they represent an
important property of the electricity system (that you can not produce more
electricity than the installed capacity). Thus they are very important for the
model structure and should not be relaxed. This is where the concept of variable
splitting comes in, introduced by Jörnsten and Näsberg (1986). The main idea is
to split a variable into several variables, and then add the constraints that they
should all equal the original variable. Thus, let us introduce splitting variables
for the investment variable in problem (4.2.1) by letting ysplit

n := y, n ∈ N . This
gives the equivalent problem formulation

minimize
y,y

split
n ,xt

cinv

N

∑

n∈N

ysplit
n +

∑

n∈N

∑

t∈Tn

crun
t xt,

subject to y
split
n = y, n ∈ N ,

xt ≤ y
split
n , t ∈ Tn, n ∈ N ,

xt ∈ Xt, t ∈ Tn, n ∈ N ,

y ≥ 0.

Now, let πn denote the Lagrangian dual variables corresponding to the relax-
ation of the constraints ysplit

n = y, n ∈ N . The Lagrangian dual function is then
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defined by the minimization of the subproblem, according to

h(π) :=















min
y,y

split
n ,xt

[

∑

n∈N

cinv

N
y

split
n +

∑

n∈N

∑

t∈Tn

crun
t xt +

∑

n∈N

πn(y − ysplit
n )

]

s.t. xt ≤ y
split
n , t ∈ Tn, n ∈ N ,

xt ∈ Xt, t ∈ Tn, n ∈ N ,

y ≥ 0















(4.2.2a)

= min
y≥0

∑

n∈N

πny (4.2.2b)

+
∑

n∈N











min
y

split
n ,xt

[

(

cinv

N
− πn

)

y
split
n +

∑

t∈Tn

crun
t xt

]

s.t. xt ≤ y
split
n , t ∈ Tn,

xt ∈ Xt, t ∈ Tn











. (4.2.2c)

The corresponding dual problem is

maximize h(π),
subject to πn ∈ R, n ∈ N ,

(4.2.3)

and we can see that it has some additional properties:

max
π∈RN

{

min
y≥0

∑

n∈N

πny

}

=⇒















y = 0, when
∑

n∈N

πn ≥ 0,

y → ∞, when
∑

n∈N

πn < 0.
(4.2.4)

Thus, for
∑

n∈N πn < 0, the subproblem (4.2.2b) is unbounded. Therefore, this
implicit constraint on the dual variables can be expressed explicitly in the dual
problem. Furthermore, since the inequality

∑

n∈N πn ≥ 0 implies that y = 0 in
the solution to (4.2.2b), we can remove the variable y in the subproblem when
the dual problem is subject to this constraint. Thus, with y = 0 the subproblem
(4.2.2a) is separable over n ∈ N , which means that the solution process can be
parallelized.

The analogous reasoning for the subproblem in (4.2.2c) yields that if the in-
equality πn > cinv

N
holds, the nth subproblem will be unbounded, n ∈ N . Hence

we include the explicit constraints πn ≤ cinv

N
, n ∈ N , in the dual problem. The
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Lagrangian dual problem can thus be stated as to

maximize ĥ(π),

subject to
∑

n∈N

πn ≥ 0,

πn ≤
cinv

N
, n ∈ N ,

(4.2.5)

where

ĥ(π) =
∑

n∈N







min
y

split
n ,xt

[

(

cinv

N
− πn

)

y
split
n +

∑

t∈Tn

crun
t xt

]

s.t. y
split
n ≥ xt ∈ Xt, t ∈ Tn






. (4.2.6)

As demonstrated by the above example, the starting point for the variable split-
ting approach is to reformulate the problem such that copies of some primal
variables are introduced. Constraints are added to ensure consistency between
the original variables and the copies, and then these consistency constraints
are Lagrangian relaxed. The method was developed simultaneously by dif-
ferent researchers, and is therefore also referred to as Lagrangian decomposition
(Guignard and Kim, 1987) or variable layering (Glover and Klingman, 1988).

4.3 Subgradient algorithm

The subgradient algorithm was developed by N. Z. Shor in 1962; see Shor (1991)
for a full review of the early history of nonsmooth optimization. This method
has often been applied to solve optimization problems, especially together
with Lagrangian duality. Larsson et al. (1996) formulated the conditional
subgradient method, which combines subgradient methods with subgradient
projection methods. However, we begin by a definition.

Definition 1. A vector γ ∈ R
n is a subgradient of the concave function h at

π̄ ∈ R
n if the inequality

h(π) ≤ h(π̄) + γ⊤(π − π̄) (4.3.1)

holds for all π ∈ R
n. The set of subgradients of h at π̄ is called the subdifferential,

denoted ∂h(π̄).
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Geometrically, a subgradient is a vector defining a supporting hyperplane
to the epigraph of the function h containing the point π̄. The subgradient
algorithm is provided in Algorithm 1. Here, we assume that π ∈ Π, such that
Π is the feasible set for the multipliers π.

Algorithm 1 Subgradient algorithm

1: Initiate π0 ∈ Π and h0best = h(π0). Let k := 0.
2: Find a subgradient to h at the point πk

=⇒ solve the subproblem min
x∈X

L(x,πk)

which gives a solution x(πk).
A subgradient to h is then given by γk := g(x(πk))

3: For some αk > 0, the new point πk+1 := ProjΠ{π
k − αkγ

k}

4: Update hk+1
best := max{hkbest, h(π

k+1)}
5: Termination criteria fulfilled =⇒ stop.

Otherwise, let k := k + 1 and go to 2

Step lengths αk

The step lengths αk are chosen according to some rule which guarantees con-
vergence. According to Andréasson et al. (2020)[p.181], the first rule is the
divergent series step length rule. It requires that

αk > 0, k = 0, 1, . . . ; lim
k→∞

αk = 0;

∞
∑

k=0

αk = +∞. (4.3.2)

The second rule adds to (4.3.2) the square-summable restriction

∞
∑

k=0

α2
k < +∞. (4.3.3)

The conditions in (4.3.2) allow for convergence to any point from any starting
point, since the total step is infinite, but convergence is therefore also quite
slow; the additional condition in (4.3.3) means that fast sequences are selected.
The third rule, and the one used in this work, is the Polyak step length rule
(Polyak, 1969) which has seen much use in practice. It is defined as

αk =
θk
(

h∗ − h(πk)
)

||b−Ax(πk)||2
(4.3.4)
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under the conditions

0 < ǫ1 ≤ θk ≤ 2− ǫ2 < 2, k = 0, 1, 2, .... (4.3.5)

Here, θk acts as a scaling parameter for the step length, and the parameters ǫ1
and ǫ2 define positive limits for the scaling parameter.

Polyak showed that using (4.3.4) together with (4.3.5) guarantees theoretical
convergence to an optimal solution to the dual problem (4.1.2). However, the
dual optimal value h∗ is typically not known. If so, an upper bound h̄ ≥ h∗ can
be used instead to achieve finite convergence to an ǫ-optimal solution, where
we define ǫ-optimal as h(πk) ≥ 2h∗ − h̄ − ǫ for any ǫ > 0; see (Polyak, 1969,
Theorem 4). For the full-scale model, an upper bound can be found by solving
the basic model for each examined region. This gives a feasible solution to
the full-scale model, but likely not optimal since no trade between regions is
included. The upper bound is given as the sum of the total system costs for all
the included regions.

The value of the scaling parameter θk can be chosen in different ways. One
method that in practice has been shown to give fast convergence to an optimal
solution is presented by Caprara et al. (1999). The authors presents the use
of an adaptive method, where the value of the parameter is updated every p
number of subgradient iterations:

θk+1 =















1
2θk, if h̄−

¯
h > 0.1 · |

¯
h|,

3
2θk, if h̄−

¯
h < 0.01 · |

¯
h|, k = 1, 2, ...,

θk, otherwise,

(4.3.6)

where

h̄ = max
r=k−p+1,...,k

h(πr) and
¯
h = min

r=k−p+1,...,k
h(πr). (4.3.7)

For every p = 3 subgradient iterations, the best and worst lower bounds found
during the last p iterations are compared. If the difference is more than 10%,
this means that too large steps are taken by the algorithm and thus the scaling
parameter is halved. On the other hand, if the difference is less than 1%,
this means the step length can be increase and thus the scaling parameter is
multiplied by 3

2 . The values of p, 0.1, and 0.01 should be modified depending
on the results from the algorithm. Note that this method does not require
0 < θk < 2.
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Generating primal solutions by the use of ergodic sequences

In general, subgradient optimization methods often identify near-optimal dual
solutions, but do not directly provide solutions to the primal problem. The
conditional subgradient method constructs a sequence {x(πk)} of solutions to
the Lagrangian subproblem, but these solutions are typically not feasible in
the original primal problem since they will not satisfy the relaxed constraints.
Thus, the sequence {x(πk)} does not converge to the optimal primal solution.
To remedy this, ergodic sequences of subproblem solutions can be generated.

As first presented by Larsson et al. (1999), ergodic sequences creates approxi-
mations of primal solutions by averaging the solutions from the subproblems.
The authors showed that the ergodic sequences in the limit produce optimal
solutions to the original problem. An enchanced version in terms of conver-
gence speed was introduced by Gustavsson et al. (2015). This version exploits
more information from later subproblem solutions than from earlier ones. The
ergodic sequence {x̃k} is defined as

x̃k :=
k−1
∑

s=0

µk
sx(π

s);
k−1
∑

s=0

µk
s = 1; µk

s ≥ 0, s = 0, ..., k − 1, (4.3.8)

where the convexity weights µk
s are chosen according to the sn-rule:

µk
s :=

(s+ 1)n
∑k−1

r=0(r + 1)n
, s = 0, ..., k − 1, k = 1, 2, ..., n ≥ 0. (4.3.9)

For n > 0, the sn-rule results in an ergodic sequence in which the later iterates
are assigned higher weights than the earlier ones. For increasing values of n,
the weights are shifted towards later iterates. See Definition 1 in Gustavsson
et al. (2015) for further details.

It remains however to combine the ergodic sequences with the variable splitting
approach. The idea used in this research is to calculate each subproblem’s
average investments over the subgradient iterations. This converges in the
limit for each subproblem. However, this provides N (possibly) different
solutions for the investments. Furthermore, all these solutions are most likely
not feasible in the original full-scale model since the different subproblems
have different profiles for weather and demand. Thus, a heuristic to combine
these solutions is currently applied (see Paper I).
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Figure 4.3: A schematic illustration of the modelling methodology.

i ∈ I than the 2-week segment s ∈ S is calculated as1

Rips = 1 + S −
∑

u∈S

[wipu ≤ wips], i ∈ I, p ∈ P, s ∈ S, (4.4.1)

where S is the set of 2-week segments. It follows that the length of the first step

1The Iverson bracket (Iverson, 1962) returns 1 if the expression within the brackets is true;
otherwise it returns 0.
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in the capacity–cost curve M e
i,p,r1

is given by

M e
i,p,r1

=

∑

s∈S

[Rips = 1]wips

∑

s∈S [Rips = 1]
, i ∈ I, p ∈ P, (4.4.2)

where r1 is the first element in the set of cost classes R. For i ∈ I and p ∈ P ,
the lengths of the subsequent steps in the capacity–cost curve are calculated
sequentially as

M e
i,p,rm

=

∑

s∈S [Rips = m]wips
∑

s∈S [Rips = m]
−

m−1
∑

n=1

M e
i,p,rn

, m ∈ {2, . . . , |R|}. (4.4.3)

The length of the last step in the capacity–cost curve is set to be very large, i.e.
three times the maximum annual load in the respective region. The height of
each step in the capacity–cost curve, i.e. the weight of the investment, is given
by the number of 2-week segments sharing the investment, as

λe
i,p,s,rm

=
1

S − (m− 1)
, m ∈ {1, . . . , |R|}. (4.4.4)

This cost is slightly modified in two ways: 1) the cost share is lower in the
first iterations in order to enable the capacity with a high investment costs
to stabilize before extinction, and 2) the cost share is lower for those 2-week
segments that have not invested in the capacity that other 2-week segments
have. This "rebate" is then reduced with the iteration number. Hence, for i ∈ I ,
p ∈ P , and s ∈ S , it holds that

λe
i,p,s,rm

=
αnips

S − βn(m− 1)
, m ∈ {1, . . . , |R|}, n ∈ {1, . . . , 10}, (4.4.5)

where the choices for the parameters αnips and βn in each iteration n are
listed in Table 4.1. The parameter αnips can take on a high (αhigh

nips) or low
(αlow

nips) value depending on whether or not investments have been made for
the corresponding region, technology, and 2-week segment (i, p, s).

The construction of the capacity–cost curve is summarized in Algorithm 2.
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Table 4.1: Parameter values used in the consensus loop

iteration number (n) αlow
nips βn α

high
nips

1 0.5 0.5 0.1

2 0.6 0.6 0.1

3 0.7 0.7 0.2

4 0.8 0.8 0.2

5 0.8 0.9 0.3

6 0.8 1.0 0.4

7 0.8 1.0 0.5

≥ 8 0.8 1.0 0.6

Algorithm 2 Creating the capacity–cost curve

1: Create a list L of the capacities such that L := (wip1, wip2, . . . , wipS).
2: Sort the list L in ascending capacity size order. Each unique element

represents a step in the capacity–cost curve.
3: The height of each step in the capacity–cost curve, i.e. λe

iprs, is determined
by the number of 2-week segments sharing the investment. For each ele-
ment, the number of 2-week segments sharing the investment corresponds
to S reduced by the order of the element in the list L.

4: if ∃ duplicates in list L then
remove duplicates from the list L

5: The length of the steps corresponds to capacity, such that each new step
occurs at the values present in the reduced list L∗. The potential of each cost
class, M e

i,p,rm
, is given by the capacity in the capacity–cost curve reduced

by the capacity of the prior step.

Yearly linkages

In traditional electricity system investment models, the represented years are
linked by the investment variables. However, the Hours-to-Decades model
disregards any possible influence that future years might have on investments.
This is based on the hypothesis that investments are made only to meet exactly
the demand for electricity in the cost-optimal system, largely ignoring future
needs in terms of capacity.

The cost of CO2 emissions, investment costs (due to learning), efficiencies and
discount rate can change between years and may influence the investment
decisions. For scenarios with gradually increasing costs for generation capacity
or operation over the years, this increase is likely to impact investments and
needs to be transferred to prior years. Electricity generation technologies
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that rely on fossil fuels are for example typically subject to a gradual increase
in operational costs over the decades considered, which reduces the cost-
competitiveness of these technologies in the long-term perspective. Under
the assumption that the total cost for investments and operation of a power
plant is evenly distributed across all of its hours of operation, some of the
operational costs from later years need to be shifted to earlier years. The net
present value of these future operational cost (with interest rate δ) is added
to the objective function. Thus, for p ∈ P and t ∈ Ts, s ∈ S, we define the
additional operational costs, Cadd

pty , as

Cadd
pty :=

1

Zp

y+Zp
∑

n=y

1

(1 + δ)(n−y)
(Crun,n

pt − C
run,y
pt ), y ∈ Y, (4.4.6)

where y ∈ Y is the year considered, i.e. the year in which investments are made,
and Zp is the lifetime of technology p ∈ P . The costs (4.4.6) are added to the
running cost Crun

pt , in the objective function (3.2.18) for the respective years.
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5 Model implementation

In this chapter, we apply the mathematical theory from Chapter 4 to the full-
scale model. But first, we begin by discussing some of the data used in the
different models.

5.1 Data used in this thesis

The investment costs and fixed operation and maintenance costs are based on
the World Energy Outlook (IEA, 2016). The costs for wind power are, however,
based on Energistyrelsen (2016). For the Hours-to-Decades implementation, the
wind power costs are based on the costs presented by Mone et al. (2017). The
models use annualised investment costs where a 5% interest rate is assumed.

Technology learning for thermal generation is included as gradual improve-
ment in the efficiencies of these technologies, which is reflected in a reduced
variable cost for later years in the model. The cost of carbon dioxide emissions
varies also between years as it is assumed to become more expensive in the
forthcoming years. Moreover, the variable costs do not include costs from
thermal cycling generation. Instead, the start-up costs and part-load costs
are included explicitly as part of the thermal cycling constraints in the model.
These costs, including the minimum load level, are based on the report by
Jordan and Venkataraman (2012). The cycling properties of nuclear power are
based on the paper by Persson et al. (2012), who describe a start-up time of 20h
and a minimum load level of 70%. Biogas is assumed to be produced through
the gasification of solid biomass, with 70% conversion efficiency. The cost of
the gasifier equipment is included in the form of 20 e/MWh added to the
fuel cost, rather than being incorporated into the investment cost of the biogas
technologies, since biogas is storable, which means that the gasifier equipment
may attain a much higher number of full-load hours compared to the power

53
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plant consuming the biogas. The total cost of the gasification equipment is
taken from Thunman et al. (2019), and 8,000 full-load hours are assumed.

Wind power sites are ordered in classes. Offshore sites are represented by one
class while onshore sites are organized into several classes corresponding to
different wind conditions, where each class is represented as one generation
technology. These classes are defined differently for the different models
and based on different data. For the basic and full-scale model, wind power
generation profiles are based on a code set presented by Mattsson et al. (2021),
which combines data with high spatial resolution and high temporal resolution.
The wind resource in each region is divided into 10 different wind classes with
different annual capacity factors and generation patterns dependent on local
differences in topography. For the Hours-to-Decades model, the wind power
generation profiles are calculated for wind turbines with low specific power
(200 W/m2), with the power curve and losses proposed by Johansson et al.
(2017). The wind speed input data comprise a combination of the MERRA and
ECMWF ERA-Interim data for year 2012, whereby the profiles from the former
are re-scaled with the average wind speeds from the latter (see ECMWF (2010),
Lucchesi (2012), and Olauson and Bergkvist (2015)). The high resolution of
the wind profiles from the ERA-Interim data was processed into wind power
generation profiles and put together into twelve wind classes for each region.
The wind farm density is set to 3.2 MW/(km)2 and is assumed to be limited
to 10% of the available land area, accounting for protected areas, lakes, water
streams, roads, and cities (Nilsson and Unger, 2014).

Solar PV is modelled as mono-crystalline silicon cells installed with optimal tilt
with one generation profile for each region. Solar radiation data from MERRA
is used to calculate the generation with the model presented by Norwood et al.
(2014), including thermal efficiency losses. The cost and technical data for
variation management technologies are based on Energistyrelsen (2012). The
hydrogen storage is assumed to be of the large-scale, steel lined cavern type.

5.2 Lagrangian relaxation

Similar to the Hours-to-Decades model, we wish to separate the annual time
steps of the full-scale model into M -week periods (where M = 2 in the Hours-
to-Decades model) and solve them in parallel. Thus, some new sets and
parameters are necessary:

• N = {1, . . . , N} is the set of time periods within a year, with M :=
⌊

52
N

⌋

,
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• Tn = {(n − 1)Ω + 1, . . . , nΩ} is the set of time steps within each time
period n ∈ N , where Ω = 24×7×M

τ
is the length of a time period and τ is

the time step length.

Furthermore, let ysplit
prin := ypri and u

split
kqrin := ukqri for all n ∈ N , such that we

introduce splitting variables (see Section 4.2) for the investment variables.

Now, consider again the objective function (3.2.18) representing the total system
cost. Using the above notation, it can be equivalently expressed as

C tot :=
∑

n∈N

Csplit
n (5.2.1)

where the system cost in each time period n ∈ N is defined as

Csplit
n :=

∑

p∈P

∑

r∈R

∑

s∈S

(
cinvtech
ps + comf

p

N
)ysplit

prsn (5.2.2a)

+
∑

p∈P

∑

r∈R

∑

s∈S

∑

i∈IP

active(s,p)

∑

t∈Tn

crun
prixprist (5.2.2b)

+
∑

p∈Pthermal

∑

r∈R

∑

s∈S

∑

i∈IP

active(s,p)

∑

t∈Tn

(

c+prsz
+
prist + c̃prs(zprist − xprist)

)

(5.2.2c)

+
∑

s∈S

∑

t∈Tn

cCO2
s etot

st (5.2.2d)

+
∑

k∈K

∑

(q,r)∈A

∑

s∈S

cinvtra
kqrs

N
u

split
kqrsn (5.2.2e)

+
∑

k∈K

∑

(q,r)∈A

∑

s∈S

∑

t∈Tn

ctra
kqrvkqrst. (5.2.2f)

The investment variables in the model constraints should also be replaced by
the splitting variables, and we add to the model the constraints

ysplit
prsn = yprs, p ∈ P, r ∈ R, s ∈ S, n ∈ N ; (5.2.3)

u
split
kqrsn = ukqrs, k ∈ K, (q, r) ∈ A, s ∈ S, n ∈ N . (5.2.4)

These constraints are then Lagrangian relaxed using Lagrangian multipliers
πone
prsn and πtwo

kqrsn, respectively.

As for the other model variables, we need to handle the constraints that consider
multiple time steps. More specifically, it is "the seams" that make the problem
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non-separable over time periods. Consider again the constraints (3.2.7). Using
the notation above, for all p ∈ Pthermal, r ∈ R, i ∈ IP

active(s, p), and s ∈ S, they
can be equivalently expressed as

z+prist ≥















zprist − zp,r,i,s,t−1, t ∈ Tn \ {(n− 1)Ω + 1}, n ∈ N ,

zprist − zp,r,i,s,t−1, t = (n− 1)Ω + 1, n ∈ N \ {1},

zprist − zp,r,i,s,T , t = 1.

(5.2.5)

Here, it is the second and third sets of constraints—which correspond to the
seams—that need to be Lagrangian relaxed in order to make the model separa-
ble. For this, we denote the Lagrangian multipliers πthree

prist.

Moreover, for all p ∈ Pthermal, r ∈ R, s ∈ S, and i ∈ IP
active(s, p), the constraints

(3.2.8) can be written as
∑

j∈IP

active(s,p)

y
split
prjn − z+prist ≥















zp,r,i,s,t−tp , tp ∈ {m ∈ Tstart(p) : t−m ∈ Tn}, t ∈ Tn, n ∈ N ,

zp,r,i,s,t−tp , tp ∈ {m ∈ Tstart(p) : t−m ∈ Tn−1}, t ∈ Tn, n ∈ N \ {1},

zp,r,i,s,NΩ+t−tp , tp ∈ {m ∈ Tstart(p) : t−m ≤ 0}, t ∈ Tn, n = 1.

(5.2.6)

Note that here the splitting variables are used for investments in electricity
generation; they have thus replaced the original investment variables. The
first constraint corresponds to time steps for zprist within the M -week period,
while the second constraint represents the time steps in the previous M -week
period. The third constraint regards the special case of the first and last M -
week periods during the year. Here, we Lagrangian relax the second and third
constraint using Lagrangian multipliers πfour

prist.

Furthermore, for all p ∈ Phydro, r ∈ R, and s ∈ S, the constraints (3.2.12) are
replaced by

wrst + grt − τ
∑

i∈IP

active(s,p)

xprist ≥















wr,s,t+1, t ∈ Tn \ {nΩ}, n ∈ N ,

wr,s,t+1, t = nΩ, n ∈ N \ {N},

wr,s,1, t = T.

(5.2.7)
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Once again, the second and third constraints should be relaxed, using La-
grangian multipliers πfive

prst.

For all p ∈ Phydro, r ∈ R, i ∈ IP
active(s, p), and s ∈ S , the constraints (3.2.14) and

(3.2.15) can be written as

(1 + δinc
r )xprist ≥















xp,r,i,s,t+1, t ∈ Tn \ {nΩ}, n ∈ N ,

xp,r,i,s,t+1, t = nΩ, n ∈ N \ {N},

xp,r,i,s,1, t = T ;

(5.2.8)

(1 + δdec
r )xprist ≤















xp,r,i,s,t+1, t ∈ Tn \ {nΩ}, n ∈ N ,

xp,r,i,s,t+1, t = nΩ, n ∈ N \ {N},

xp,r,i,s,1, t = T.

(5.2.9)

The second and third constraints in each of the expressions (5.2.8) and (5.2.9)
should be relaxed, and we denote the corresponding Lagrangian multipliers
πsix
prist and πseven

prist .

Moreover, the constraints (3.2.9) should be relaxed using Lagrangian multipli-
ers πeight

ls .

We also add to the subproblems the constraints (5.2.10) and (5.2.11), which limit
the hot capacity and the start-up capacity, respectively. Note that these con-
straints are redundant in the original problem, but are here used to strengthen
the dual formulation by making the subproblems tighter. These constraints are
formulated as

zprist ≤
∑

j∈IP

active(s,p)

yprj , i ∈ IP
active(s, p), p ∈ Pthermal, r ∈ R, t ∈ T ; (5.2.10)

z+prist ≤
∑

j∈IP

active(s,p)

yprj , i ∈ IP
active(s, p), p ∈ Pthermal, r ∈ R, t ∈ T . (5.2.11)

The new objective will consist of C tot from (5.2.1) and the added penalty terms,
which are derived from the Lagrangian relaxation of the constraints described
above. The penalty term Hrelax is defined as

Hrelax :=
∑

n∈N

Hone
n +

∑

n∈N\{1}

H two
n +

∑

n∈N\{N}

H three
n +H four, (5.2.12)
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where Hone
n is defined for each n ∈ N as

Hone
n :=

∑

p∈P

∑

r∈R

∑

s∈S

πone
prsn

(

yprs − ysplit
prsn

)

(5.2.13a)

+
∑

k∈K

∑

(q,r)∈A

∑

s∈S

πtwo
kqrsn

(

ukqrs − u
split
kqrsn

)

(5.2.13b)

+
∑

l∈L

∑

s∈S

π
eight
ls



fls −
∑

t∈Tn

∑

p∈Pren

∑

r∈R(l)

∑

i∈IP

active(s,p)

xprist



 . (5.2.13c)

For n ∈ N \ {1}, H two
n is defined as:

H two
n :=

∑

t=(n−1)Ω+1

∑

p∈Pthermal

∑

r∈R

∑

s∈S

∑

i∈IP

active(s,p)

πthree
prist

(

zprist − zp,r,i,s,t−1 − z+prist

)

(5.2.14a)

+
∑

t∈Tn

∑

p∈Pthermal

∑

tp∈{m∈Tstart(p):t−m∈Tn−1}

∑

r∈R

∑

s∈S

∑

i∈IP

active(s,p)

πfour
prist



zp,r,i,s,t−tp −
∑

j∈IP

active(s,p)

y
split
prjn + z+prist



 . (5.2.14b)

For n ∈ N \ {N}, we define H three
n as

H three
n :=

∑

t=nΩ

∑

p∈Phydro

∑

r∈R

∑

s∈S

πfive
prst



wr,s,t+1 − wrst − grt + τ
∑

i∈IP

active(s,p)

xprist





(5.2.15a)

+
∑

t=nΩ

∑

p∈Phydro

∑

r∈R

∑

s∈S

∑

i∈IP

active(s,p)

πsix
prist

(

xp,r,i,s,t+1 − (1 + δinc
r )xprist

)

(5.2.15b)

+
∑

t=nΩ

∑

p∈Phydro

∑

r∈R

∑

s∈S

∑

i∈IP

active(s,p)

πseven
prist

(

(1 + δdec
r )xprist − xp,r,i,s,t+1

)

.

(5.2.15c)

Additional relaxed constraints for the specific values of n that relate to the first
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and last period in N are given by H four:

H four :=
∑

p∈Pthermal

∑

r∈R

∑

s∈S

∑

i∈IP

active(s,p)

πthree
pris1

(

zpris1 + zprisT − z+pris1

)

(5.2.16a)

+
∑

t∈T1

∑

p∈Pthermal

∑

tp∈{m∈Tstart(p):t≤m}

∑

r∈R

∑

s∈S

∑

i∈IP

active(s,p)

πfour
prist



zp,r,i,s,NΩ+t−tp −
∑

j∈IP

active(s,p)

y
split
prj1 + z+prist



 (5.2.16b)

+
∑

p∈Phydro

∑

r∈R

∑

s∈S

πfive
prsT



wrs1 − wrsT − grT + τ
∑

i∈IP

active(s,p)

xprisT





(5.2.16c)

+
∑

p∈Phydro

∑

r∈R

∑

s∈S

∑

i∈IP

active(s,p)

πsix
prisT

(

xpris1 − (1 + δinc
r )xprisT

)

(5.2.16d)

+
∑

p∈Phydro

∑

r∈R

∑

s∈S

∑

i∈IP

active(s,p)

πseven
prisT

(

(1 + δdec
r )xprisT − xpris1

)

. (5.2.16e)

The Lagrangian problem, which is separable into n ∈ N subproblems, is then
defined as

h(π) =







































minimum
∑

n∈N

Csplit
n +Hrelax,

subject to (5.2.2), (5.2.13), (5.2.14), (5.2.15), (5.2.16),

(3.2.1), (3.2.2), (3.2.3), (3.2.4), (3.2.5), (3.2.6),

(3.2.10), (3.2.11), (3.2.13), (3.2.16), (3.2.17),

(5.2.5), (5.2.6), (5.2.7), (5.2.8), (5.2.9)







































. (5.2.17)

The dual problem is defined as

max h(π)

s.t.
∑

n∈N

πone
prsn ≥ 0, p ∈ P, r ∈ R, s ∈ S,

πone
prsn ≤

1

N

(

cinvtech
ps + comf

p

)

, p ∈ P, r ∈ R, s ∈ S, n ∈ N ,

∑

n∈N

πtwo
kqrsn ≥ 0, k ∈ K, (q, r) ∈ A, s ∈ S,
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πtwo
kqrsn ≤

1

N
cinvtra
kqr , k ∈ K, (q, r) ∈ A, s ∈ S, n ∈ N ,

πthree, πfour, πfive ≥ 0,

πsix, πseven, πeight ≥ 0. (5.2.18)

5.3 Solving the Lagrangian dual problem

To solve the Lagrangian dual problem, the subgradient algorithm from Sec-
tion 4.3 is applied. As a termination criterion we use the duality gap such that
the algorithm terminates when the following criterion is satisfied:

UBD − LBD
UBD

< ǫgap. (5.3.1)

Here, UBD is an upper bound on the objective value of the primal problem and
LBD is a lower bound on the optimal objective value of the primal problem.
The left–hand–side is defined as the relative duality gap, and we say that it
should be smaller than the duality gap max ǫgap, which is defined as a small
positive number. Since we are working with an LP, strong duality implies that
the duality gap is zero in the optimal solution. However, we let ǫgap := 10−4.

Lower bounds on the optimal objective value of the primal problem are given
by the Lagrangian function evaluated for the Lagrangian multipliers, and thus
a result of the subgradient algorithm. The upper bound is given by a feasible
solution to the primal problem. For this, we can use the simple model to solve
the electricity system investment problem for each region r ∈ R. This solution
is naturally feasible in the full-scale model as well, since both models contain
the same type of constraints albeit the option for electricity trade.

Updating the multipliers

If the dual problem has constraints on the dual variables, then the update
from the subgradient algorithm may lead to values on the multipliers that are
infeasible. If so, the multiplier needs to be projected on the feasible region. Let

π̄ := πk − αkγ
k

as in the subgradient algorithm update. For the multiplier vectors πthree, πfour,
πfive, πsix, πseven, and πeight, the projection according to step 3 in Algorithm 1
can be made separately for each element of each vector. Thus, the projection is
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given by

πk+1
j :=

{

π̄j , π̄j ≥ 0,

0, π̄j < 0,

where j refers to element j in the respective multiplier vector.

For multiplier πone
prsn, then for each p ∈ P, r ∈ R, s ∈ S with c :=

cinvtech
ps + comf

p

N
,

the projection corresponds to solving the problem to

minimize 1
2 ||π − π̄||2 = 1

2

∑

n∈N

(πn − π̄n)
2,

subject to
∑

n∈N

πn ≥ 0,

πn ≤ c, n ∈ N ,

(5.3.2)

with the KKT conditions (where λ and ψn are multipliers of the constraints)






π1
...
πN






−







π̄1
...
π̄N






+
∑

n∈N

ψnen − λ







1
...
1






= 0,

ψn(πn − c) = 0, n ∈ N ,

λ(−
∑

n∈N

πn) = 0.

(5.3.3)

π1

π2

Figure 5.1: The projection problem for N = 2. Here,
the green area is the feasible region. For points inside
the blue cones, the projection should be onto the corre-
sponding extreme points. For any other points outside
the green area, the projection is defined by the corre-
sponding shortest Euclidean distance to the triangle.
The blue cones are spanned by the gradients of the
active constraints in the extreme points.

The projection problem, illustrated in Figure 5.1, has the property that it is a
convex quadratic program. Therefore, the Lagrangian dual of this problem
is also a convex quadratic program. To see this, Lagrangian relax the first
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constraint. Then, using the Lagrange multiplier λ, the Lagrangian function is

L(π, λ) := 1
2

∑

n∈N

(π − π̄)2 − λ
∑

n∈N

πn =
∑

n∈N

(

1
2 (πn − π̄n)

2 − λπn
)

.

Let Ln(πn, λ) :=
1
2 (πn− π̄n)

2−λπn, such that L(π, λ) =
∑

n∈N Ln(πn, λ) holds.
It follows that the function L is separable with respect to n ∈ N , where Ln is a
quadratic, convex, and differentiable function with respect to its first argument.

Now, define

hn(λ) := minimum Ln(πn, λ) = minimum 1
2 (πn − π̄n)

2 − λπn
subject to πn ≤ c subject to πn ≤ c

so that the Lagrangian dual function is given by

h(λ) =
∑

n∈N

hn(λ) =
∑

n∈N

(

minimum 1
2 (πn − π̄n)

2 − λπn
subject to πn ≤ c

)

.

For a constant value of λ, the minimum for Ln over πn ∈ [−∞, c] is attained
when either ∂Ln(πn,λ)

∂πn
= 0 or πn = c. Since

∂Ln(πn, λ)

∂πn
= πn − π̄n − λ = 0 ⇐⇒ πn = π̄n + λ,

it follows that Ln(·, λ) attains its minimum for

πn =

{

π̄n + λ, π̄n ≤ c− λ,

c, π̄n > c− λ.
(5.3.4)

Hence, the function h can be expressed according to the following:

h(λ) =
∑

n∈N :π̄n≤c−λ

(

1
2λ

2 − λ(π̄n + λ)
)

+
∑

n∈N :π̄n>c−λ

(

1
2 (c− π̄n)

2 − λc
)

=
∑

n∈N :π̄n≤c−λ

(

− 1
2λ

2 − λπ̄n
)

+
∑

n∈N :π̄n>c−λ

(

1
2 (c− π̄n)

2 − λc
)

.

The function h is clearly a quadratic and concave function of λ. The Lagrangian
dual problem is given by

maximum h(λ),
subject to λ ≥ 0.
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The dual function is differentiable, and thus the derivative can be used to find
the maximum. Hence, the dual problem is maximized when ∂h(λ)

∂λ
= 0 or

λ = 0:

∂h(λ)

∂λ

∣

∣

∣

λ
= −

∑

n∈N :π̄n+λ≤c

(λ+ π̄n)−
∑

n∈N :π̄n+λ>c

c

=⇒
∂h(λ)

∂λ
= −

∑

n∈N

min{π̄n + λ ; c} = 0.

(5.3.5)

The partial derivative ∂h(λ)
∂λ

is decreasing (though not strictly) for increasing

λ

∂h(λ)
∂λ

−π̄1

−π̄2

−π̄3

−π̄4

−c

−4c

λ∗

Figure 5.2: The partial derivative as a func-
tion of λ. The optimal value λ∗ is where the
partial derivative is equal to zero.

values of λ. Hence, it will be zero for a specific value of λ. As an example,
consider Figure 5.2, where we use the property

−min{π̄n + λ ; c} = max{−(π̄n + λ) ;−c}.

The gradient of the function h changes in the break points corresponding to
λ = c − π̄n, n ∈ N . Thus, between two break points, the point at which
∂h(λ)
∂λ

= 0 holds will be passed, and this corresponds to the optimal value λ∗.
Using the optimal value λ∗, the optimal values π∗

n, n ∈ N , are then given by
(5.3.4). The method discussed here to find the projection point is described in
Algorithm 3.

If there does not exist a point λ ≥ 0, for which ∂h(λ)
∂λ

= 0 holds, then this implies
that ∂h(λ)

∂λ
= −

∑

n∈N min{π̄n + λ ; c} 6= 0 =⇒ π̄n > 0 for all n ∈ N . Thus, if
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π̄n > 0 for all n ∈ N , then λ∗ = 0 and the function h(λ) has no zero derivative
for λ ≥ 0.

Algorithm 3 Algorithm to solve the projection problem

1: Calculate all break points λn := c− π̄n, n ∈ N

2: Calculate the partial derivative for all break points, i.e. ∂h(λn)
∂λ

, n ∈ N
3: Find λi and λj such that

∂h(λi)
∂λ

= min
n:

∂h(λn)
∂λ

≥0

{

∂h(λn)
∂λ

}

and ∂h(λj)
∂λ

= max
n:

∂h(λn)
∂λ

≤0

{

∂h(λn)
∂λ

}

4: If λi = λj , then λ∗ := λi = λj . Otherwise, λ∗ is given by the linear interpola-
tion

λ∗ :=
(0− ∂h(λi)

∂λ
)(λj − λi)

∂h(λj)
∂λ

− ∂h(λi)
∂λ

+ λi

5: Using λ∗, calculate π∗
n, n ∈ N , according to (5.3.4)

It should be noted that the Lagrangian update is analogous for the dual vari-

ables πtwo
kqrsn with c :=

cinvtech
ps +comf

p

N
, where k ∈ K, (q, r) ∈ A, s ∈ S and n ∈ N .



6 A summary of the appended
papers

Paper I: Managing the temporal resolution in elec-

tricity system investment models with a large share

of wind power: An approach using Lagrangian relax-

ation and variable splitting

In this paper, we formulate a long-term electricity system investment model
that accounts for some variation management strategies to capture the varia-
tions from intermittent electricity production technologies.

The model is decomposed, using Lagrangian relaxation in combination with
variable splitting. The decomposition results in 26 subproblems—each rep-
resenting a time period of two weeks—which can be solved in parallel. The
Lagrangian dual problem is solved by using a subgradient algorithm, which
leads to 26 different subproblem solutions each iteration of the algorithm. Er-
godic sequences are used to create a single solution in terms of production
technology investments for each of the 26 subproblems, and these 26 invest-
ment solutions are then combined through a heuristic algorithm.

The decomposed model is implemented and solved using Julia (Bezanson
et al., 2017) and JuMP (Dunning et al., 2017) together with the Gurobi (Gurobi
Optimization, LLC, 2021) solver. Three different cases that includes a single re-
gion without the possibility for trade are examined: 1) Hungary (HU), a region
with a large share of nuclear power, coal power and gas power plants, 2) Ireland
(IE), a region with good wind power conditions, and 3) southern Sweden (SE2),
a region with hydropower and a large share of nuclear power. The solutions
found by the decomposed model provide capacity investments similar to the
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optimal solution for investments provided by the non-decomposed model. The
heuristic used to combine the subproblem solutions can be further developed
as it tends to overestimate the wind power capacity which increases the to-
tal system costs. The most important extension to this work is to implement
data to include the possibility to trade with neighbouring regions, and also to
include solar power and battery technology options

This paper is in the form of a manuscript (Granfeldt et al., 2021) that is to
be submitted to a journal. The initial ideas were presented at the Swedish
Operations Research Conference, Linköping (2017), and some later ideas on the
Swedish Operations Research Conference, Nyköping (2019) and virtually at
EUROPT 2021 Workshop on Advances in Continuous Optimization, Toulouse
(2021).

Paper II: Management of wind power variations in

electricity system investment models: A parallel com-

puting strategy

In this paper, we develop a mathematical model and a heuristic method which
account for variation management strategies in a long-term electricity system
investment model. The Hours-to-Decades model discretizes the time dimen-
sion into 2-week segments and solves the resulting 26 separate problems in
parallel. Information between the segments is then exchanged in a consensus
loop, and the main idea is that the investments from the different solutions
form the basis for the investment costs in the subsequent solve. This process is
then iterated until consensus for the investments made by all 26 problems is
reached.

The model is implemented in GAMS and then solved using CPLEX on a system
with 32 cores and 256 GB RAM. Different cases are considered, with some
variation management options including storage and trade. The different
regions considered are: (1) Ireland, which is a region with good conditions
for wind power, (2) Ireland and UK (regions UK1, UK2, UK3, and IE), for
the case when trade for Ireland is considered, (3) central Spain, a region with
good conditions for solar power, and (4) Iberian Peninsula (regions ES1, ES2,
ES3, ES, and PT) for central Spain trade. The solutions found by the Hours-to-
Decades model possess an increased total system cost of approximately 1 %
compared to the same electricity investment model but with connected time.
The resulting energy mix shows that the Hours-to-Decades model responds to
variation management similar to the connected-time model. When it comes
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to the computation times, the Hours-to-Decades model are able to solve the
problem faster than a time-connected model. This is even more prominent
when several regions with trade are included. As an example, when two
regions are considered the Hours-to-Decades model takes around half an
hour to solve while the run time for time-connected model is several days.
A drawback of the method is, however, that it cannot dimension seasonal
storages, which is to store energy during summer or winter, and discharge it
during the other respective season. The results of the cases studied indicates,
however, that seasonal storage capacity can be dimensioned post-process.

Our heuristic method targets the combination of wind variation management
and trade in electricity system models. Nevertheless, if wind power or trade
are not of relevance for the investigated regions, representative days or integral
time slicing are likely more efficient modelling methodologies.

This paper was initially presented by Lisa Göransson at the International
Energy Workshop, Paris (2019), and later published in SN Operations Research
Forum, 2:25 (see Göransson et al. (2021)).



68 6. A summary of the appended papers



7 Conclusions and ideas for
future research

We have developed three electricity system models that can be used as a tool
to analyze long-term investments in an electricity system that contains a large
share of variable renewable electricity generation. We have further developed
two decomposition methods to decrease computation times for all the models
presented in this thesis. The first method, which is the one used in the Hours-
to-Decades model, can be seen as a heuristic approach to variable splitting.
This approach gave us the initial idea to develop the second method which
uses Lagrangian relaxation combined with variable splitting.

Moreover, using a decomposition over 2-week periods, the most important
part of the original model structure is kept and therefore the two methods
have reached reasonable solutions within a few iterations. In each subproblem,
we basically solve the entire electricity system model but for a smaller time
interval. Hence, for both the full-scale model and the Hours-to-Decades model,
the subproblems have a structure which is very similar to their respective
non-decomposed model. For each of the two models, this furthermore leads
to subproblem solutions which are very similar to each other. Therefore, the
optimal solution provided by each subproblem is decent in terms of a solution
to the non-decomposed problem. As a comparison, consider a decomposition
over groups of variable types instead. For example, electricity generation and
investments could be one group, and hot capacity and start-up capacity another
group. Here, we assume that we relax constraints that connect different groups
which then makes the problem separable into a few subproblems. The most
important model structures would immediately be lost, and most likely very
many iterations of the subgradient algorithm would be required before the
method converges.

The decomposition methods developed in this thesis also make the models
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parallelizable with the potential to reduce computation times. Moreover, the
subproblems of a model take approximately the same amount of time to solve
since they have the same model structure and several parameters with the
same value (e.g. costs). There is therefore not much idle time in the subgradient
algorithm. For example, if a single subproblem had taken much longer time to
solve compared to the other subproblems, then each iteration of the subgradient
algorithm would include some "waiting time" before the subgradient update
could be done. This is however not the case if all subproblems finish solving
their model simultaneously.

Another reflection is that if we would model the emission limits as a hard
constraint, it would need to be relaxed for the optimization problem to become
separable. It would hence be penalized in the objective using different dual
variables for each subproblem, the values of the dual variables being updated
in the subgradient iterations. Thus, providing from the start a reasonable cost
for the emissions in the form of taxes in the original problem will 1) make the
Lagrangian problem separable with respect to emissions, since these are not
constrained, 2) lower the complexity of the model, since fewer dual variables
are required, and 3) provide better subproblem solutions, since emissions are
penalized with the same costs in all of the subproblems.

7.1 Future perspective

There exists several ideas for how our research can be extended. A first step is
to further develop the transmission and trade aspect of the full-scale model.
The theory for it is presented in this thesis but it has yet not been implemented
and tested. Another aspect is to extend the full-scale model to include solar
power and different storage technologies such as batteries and hydrogen stor-
age. Beside the aforementioned technologies, it is possible to include electric
vehicles in the models as a variation management strategy.

However, the suggested extensions of the models will increase the computa-
tional effort required for their solution, which then calls for further develop-
ment of the problem decomposition and of algorithms for solving the result-
ing problems. The convergence to optimal solutions in the limit for ergodic
sequences used together with the variable splitting approach needs to be ex-
amined. Furthermore, the heuristic used to combine the subproblem solutions
can be further developed.
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A Nomenclature

A.1 Full-scale model

Table A.1: The index sets used in the full-scale model

symbol representation member
L countries l

R regions r

R(l) regions within a country l ∈ L r

A ⊂ R×R; transmission lines between re-
gions

q, r

P electricity generation technolo-
gies

p

Pren ⊂ P ; renewable technologies p

Pwind ⊂ Pren; wind technologies p

Phydro ⊂ Pren; hydropower technologies p

K technologies for transmission k

S := {1, . . . , S} ⊂ I; new capacity investment years s

T := {1, . . . , T}; time steps within a year t

Tstart(p) ⊂ T ∪ {0}; hours in the start-up interval for
technology p ∈ P

t

I := {S − I + 1, . . . , S}; investment periods, I = |I| i

IP
active(p, s) := I ∩ {s− Up, . . . , s}; investment periods for each tech-

nology type p ∈ P with lifespan
Up that are active at year s ∈ S

i

IK
active(s) := {S − I + 1, . . . , s}; investment periods for each

transmission type that are active
at year s ∈ S

i
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Table A.2: The variables used in the full-scale model

symbol restriction explanation unit
ypri ≥ 0 Investments in capacity (both new and old)

for technology p ∈ P in region r ∈ R dur-
ing investment period i ∈ I

GW

ukqri ≥ 0 Investments in new transmission capacity
for transmission type k ∈ K between re-
gions q and r, (q, r) ∈ A, at investment pe-
riod i ∈ I

GW

xprist ≥ 0 Generated electricity of technology type
p ∈ P in region r ∈ R using technology
from investment period i ∈ IP

active(s, p) in
year s ∈ S and time step t ∈ T

GWh/h

vkqrst ≥ 0 Electricity traded with transmission type
k ∈ K from region q to region r, (q, r) ∈ A,
in year s ∈ S at time t ∈ T

GWh/h

wrst ≥ 0 Stored hydropower in region r ∈ R, year
s ∈ S at time step t ∈ T .

GWh

zprist ≥ 0 Available hot capacity of technology type
p ∈ P in region r ∈ R using technology
from investment period i ∈ IP

active(s, p), in
year s ∈ S at time t ∈ T

GWh/h

z+prist ≥ 0 Increase in hot capacity from time step
t − 1 ∈ T to t ∈ T for technology type
p ∈ P in region r ∈ R using technology
from investment period i ∈ IP

active(s, p) in
year s ∈ S

GWh/h

etot
st ≥ 0 Auxiliary definition variable for the total

system emissions at year s ∈ S in time step
t ∈ T

tonnes CO2
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Table A.3: The parameters used in the full-scale model

symbol representation unit
b

gen
pri Existing electricity generation capacity of

technology p ∈ P in region r ∈ R in invest-
ment period i ∈ I \ S

GW

btra
kqr Existing transmission capacity of technol-

ogy k ∈ K on transmission line (q, r) ∈ A
GW

cinvtech
ps Investment cost for technology type p ∈ P

during year s ∈ S. Includes an annuity
factor

ke/GW

comf
p Fixed operation and maintenance costs for

technology type p ∈ P
ke/GW

crun
pri Run cost for technology type p ∈ P in re-

gion r ∈ R using technology from invest-
ment period i ∈ I

ke/(GWh/h)

cinvtra
kqrs Investment cost of new transmission ca-

pacity of transmission technology k ∈ K
on transmission line (q, r) ∈ A during year
s ∈ S. This cost is divided by two to com-
pensate for double arcs since the network
is expressed only with non-negative arcs.
Includes an annuity factor

ke/GW

ctra
kqr Transmission cost of transmission technol-

ogy k ∈ K on transmission line (q, r) ∈ A
ke/(GWh/h)

c+prs Upstart cost for technology type p ∈ P in
region r ∈ R in year s ∈ S

ke/(GWh/h)

c̃prs Part load cost for technology type p ∈ P
in region r ∈ R using technology at year
s ∈ S

ke/(GWh/h)

c
CO2
s The costs for emissions at year s ∈ S ke/tonnes CO2

drst Demand in region r ∈ R at year s ∈ S and
time step t ∈ T

GWh/h

epri Emissions per produced GWh of technol-
ogy p ∈ P in region r ∈ R using technol-
ogy from investment period i ∈ I

tonnes CO2/(GWh/h)

ẽpri Extra emissions when running on part-
load for technology type p ∈ Pthermal in
region r ∈ R using technology from in-
vestment period i ∈ I

tonnes CO2/(GWh/h)

e+pri Upstart emissions for technology type
p ∈ Pthermal in region r ∈ R using technol-
ogy from investment period i ∈ I

tonnes CO2/(GWh/h)
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θprt Weather profile for renewable technologies
p ∈ Pren in region r ∈ R at time step t ∈ T

share

grt Inflow into hydro power from rain, ground
etc. in region r ∈ R during time step t ∈ T

GWh

δinc
r The maximum ramping rate for water

level increase in hydropower in region
r ∈ R

share

δdec
r The maximum ramping rate for water

level decrease in hydropower in region
r ∈ R

share

Wpr Maximum capacity of wind, i.e. land avail-
ability, for wind technology p ∈ Pwind in
region r ∈ R

GW

φp Minimum load level for technology
p ∈ Pthermal

share

fls Minimum RES load level in country l ∈ L
during year s ∈ S

GWh/h

Up The lifespan of technology type p ∈ P years
Hr Upper limit for hydropower storage in re-

gion r ∈ R
GWh

T The number of total time steps in the
model

S The total number of years where it is pos-
sible to make new investments in capacity

I The total number of investment periods in
the model
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A.2 Hours-to-Decades model

Table A.4: The index sets used in the Hours-to-Decades model

symbol representation member
I set of all regions i, j

P := Pbat ∪ Pelectrolysis ∪ Phydrogen ∪ Pgen; set of all tech-
nology aggregates

p

Pbat set of all battery technologies p

Pelectrolysis set of all electrolyzer technologies p

Phydrogen set of all hydrogen storage technologies p

Pgen := Pwind ∪ P therm ∪ Psolar; set of all electricity genera-
tion technologies

p

Pwind set of all wind technologies p

P therm set of all thermal technologies p

Psolar set of all solar technologies p

Q set of technologies for transmission q

S := {1, . . . , S}; set of all 2-week segments (typically,
S = 26)

s

Ts := {(s − 1)T + 1, . . . , sT}; set of all time steps in the
2-week segment s ∈ S

t

Kp := {0, . . .}; set of hours in the start-up interval for
technology p ∈ Pthermal

k

R set of cost classes, i.e., the steps in the cost–supply
curve

r

Y set of years y
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Table A.5: The variables used in the Hours-to-Decades model

symbol restriction explanation unit
wipr ≥ 0 investment in region i ∈ I in generation tech-

nology p ∈ Pgen in cost class r ∈ R
GW

wipr ≥ 0 investment in storage capacity in region i ∈ I,
technology p ∈ Pbat ∪ Phydrogen in cost class
r ∈ R

GWh

hijqr ≥ 0 investment in transmission capacity between
regions i, j ∈ I using transmission technology
q ∈ Q in cost class r ∈ R

GW

gipt ≥ 0 electricity generation in region i ∈ I, technol-
ogy p ∈ Pgen at time step t ∈ Ts, s ∈ S

GWh/h

gipt ≥ 0 battery storage in region i ∈ I, technology
p ∈ Pbat at time step t ∈ Ts, s ∈ S

GWh

gipt ≥ 0 hydrogen storage in region i ∈ I, technology
p ∈ Phydrogen at time step t ∈ Ts, s ∈ S

GWh

eijt electricity export from region i ∈ I to region
j ∈ I at time step t ∈ Ts, s ∈ S (eijt < 0
represents import to i from j)

GWh/h

e
pos
ijt ≥ 0 absolute value of electricity export from region

i ∈ I to region j ∈ I at time step t ∈ Ts, s ∈ S
GWh/h

c
cycl
ipt ≥ 0 resulting thermal cycling costs in region i ∈ I

for technology p ∈ P at time step t ∈ Ts, s ∈ S
ke/h

b
charge
ipt ≥ 0 battery charging in region i ∈ I, technology

p ∈ Pbat at time step t ∈ Ts, s ∈ S
GWh/h

b
discharge
ipt ≥ 0 battery discharging in region i ∈ I, technology

p ∈ Pbat at time step t ∈ Ts, s ∈ S
GWh/h

gactive
ipt ≥ 0 activated thermal capacity in region i ∈ I , tech-

nology p ∈ P therm at time step t ∈ Ts, s ∈ S
GW

gon
ipt ≥ 0 started thermal capacity in region i ∈ I, tech-

nology p ∈ P therm at time step t ∈ Ts, s ∈ S
GW

d
hydrogen
it ≥ 0 electricity consumption in the electrolyzer in

region i ∈ I at time step t ∈ Ts, s ∈ S
GWh/h
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Table A.6: The parameters used in the Hours-to-Decades model

symbol representation unit
S number of 2-week segments 1
T number of time steps in each 2-week segment 1
C inv

p investment cost of technology p ∈ Pgen ke/GW
C inv

p investment cost of storage capacity for technology
p ∈ Pbat ∪ Phydrogen

ke/GWh

Ch-inv
q,i,j investment cost of transmission technology q ∈ Q

between regions i, j ∈ I
ke/GW

λe
ipsr share of the investment cost for technology p ∈ P in

region i ∈ I taken by cost class r ∈ R and segment
s ∈ S

1

αnips, βn parameters used to compute λe
ipsr in iteration n of

the consensus loop
1

λh
ijqrs share of the investment cost for transmission tech-

nology q ∈ Q between regions i, j ∈ I taken by cost
class r ∈ R and segment s ∈ S

1

Crun
pt running cost of technology p ∈ P at time step t ∈ Ts,

s ∈ S
ke/GWh

C
exp
t cost of transmitting electricity at time step t ∈ Ts,

s ∈ S
ke/GWh

M e
ipr cost class potential for generation technology p ∈ P

in region i ∈ I and cost class r ∈ R
GW

Mh
ijqr cost class potential for transmission technology

q ∈ Q between regions i, j ∈ I in cost class r ∈ R
GW

Dit demand for electricity in region i ∈ I at time
t ∈ ∪s∈STs

GWh/h

D
hydrogen
i electricity demand for hydrogen in region i ∈ I GWh/h

ηp efficiency of technology p ∈ P 1
Aip regional resources based on land available in region

i ∈ I for technology p ∈ P
GW

ξmin
p minimum share of load for p ∈ P therm 1
Con

ipt start-up cost in region i ∈ I for technology
p ∈ P therm at time step t ∈ Ts, s ∈ S

ke/(GW·h)

C
part
ipt part-load cost in region i ∈ I for technology

p ∈ P therm at time step t ∈ Ts, s ∈ S
ke/GWh

Gactive
i,p,t activated thermal capacity from previous iteration

in region i ∈ I, technology p ∈ P therm at time step
t ∈ Ts, s ∈ S

GW
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Gon
i,p,t started thermal capacity from previous iteration in

region i ∈ I, technology p ∈ P therm at time step
t ∈ Ts, s ∈ S

GW

θipt weather profile for region i ∈ I of technology p ∈ P
at time step t ∈ Ts, s ∈ S

1

Cadd
pty additional, future, running cost for technology p ∈

P at time step t ∈ Ts, s ∈ S and year y ∈ Y
ke/GWh

Zp technical life-time of technology p ∈ P years
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