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Sammanfattning 
Noggrann förutsägelse av batteriets åldringsbana och återstående livslängd krävs 
inte bara för att säkerställa säker och tillförlitlig drift av elfordon utan är också det 
grundläggande steget mot hälsomedveten användning, effektivt och tidigt 
underhåll och bedömning av batteriets restvärde. Icke-linjäritet, ett brett spektrum 
av driftsförhållanden och cell-till-cell-variationer gör dock förutsägelse av 
batteriets hälsa till en mycket utmanande uppgift.  

Teamet för batterihanteringssystem vid Chalmers tekniska högskola och gruppen 
för högspänningsbatterier vid CEVT har gått samman för att ta itu med problemet 
i det här projektet. Vi har särskilt utnyttjat maskininlärning och big data för att 
utveckla exakta, tillförlitliga och praktiska metoder för att diagnostisera 
hälsotillståndet, prognostisera den framtida åldringsbanan och förutsäga den 
återstående livslängden för litiumjonbatterier. Den förbättrade uppskattningen och 
förutsägelsen av batteriets åldrande kan leda till betydande fördelar och kan 
användas direkt av batteritillverkare, BMS-programvaruleverantörer, 
elbilsföretag, bilförsäkringsleverantörer samt lagstiftare och beslutsfattare. 
Dessutom föreslog vi en maskininlärningsbaserad livslång uppskattningsmetod 
för litiumpläteringspotential och använde den för hälsomedveten snabb 
batteriladdning. Genom omfattande simuleringar och skräddarsydda tester av 
myntceller i labbskala har vi visat att vi kan uppnå både snabbare laddning och en 
100 % längre batterilivslängd. Om detta framsteg implementeras kommersiellt 
kan det avsevärt öka bekvämligheten och acceptansen för elbilar och därmed 
påskynda övergången till ett hållbart transportsystem. 

Nästa fas innebär att använda de utvecklade modellerna för åldringsprognoser för 
optimerad batterilivslängd och utöka snabbladdningsresultaten från simulering 
och skräddarsydda myntceller i labbskala till verkliga kommersiella batterier. 

Summary 
Accurately predicting battery ageing trajectory and remaining useful life is not only 
required to ensure safe and reliable operation of electric vehicles (EVs) but is also 
the fundamental step towards health-conscious use, effective and timely 
maintenance, residual value assessment of the battery. However, the non-linearity, 
wide range of operating conditions, and cell to cell variations make battery health 
prediction a very challenging task.  

The battery management system (BMS) team at Chalmers University of 
Technology and the High Voltage Battery (HVB) group in CEVT joined the effort 
to tackle the problem in this project. Specifically, we have leveraged machine 
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learning and big data to develop accurate, reliable, and practical methods for 
diagnosing the state of health, prognosing the future aging trajectory, and predicting 
the remaining useful life of lithium-ion batteries. The improved estimation and 
prediction of battery aging can result in significant benefits and can be used directly 
by battery manufacturers, BMS software providers, EV companies, automotive 
insurance providers, as well as regulatory and policy makers. Furthermore, we 
proposed a machine learning-based lifelong estimation method for lithium plating 
potential and used it for health-aware fast battery charging. Through extensive 
simulations and tailored lab-scale coin cell tests, we have demonstrated the 
capability to achieve both faster charging and a 100% longer battery lifetime. If 
commercially implemented, this advancement is poised to significantly enhance the 
convenience and acceptance of EVs, thereby expediting the transition to a 
sustainable transport system.  

The next phase involves employing the developed ageing prediction models for 
optimised battery lifetime and expanding the fast charging results from simulation 
and tailored lab-scale coin cells to real-world commercial batteries. 

Inledning/Bakgrund 
Within the transportation sector, the anticipated battery needs and costs for the 
transition to partial or full electrification of the vehicle fleet are substantial. This is 
exemplified by Volkswagen’s announcement of securing €20 billion worth of 

battery supplies by 2025. According to a 2019 Statista study, the global market 
demand for lithium (Li)-ion batteries used in EVs is expected to surge over 20 
times, from 74 GWh in 2017 to over 1,500 GWh in 2030. This growth presents a 
significant opportunity for the battery market, but uncertainties persist in optimizing 
battery usage for long lifetimes without compromising performance.  

Battery degradation begins upon production and can accelerate if not managed 
appropriately. Extensive research has focused on determining the State of Health 
(SoH) of batteries to enable health-conscious usage and early detection of aging and 
potential thermal issues [1]–[4]. SoH is often quantified by capacity fade and 
internal resistance increase, affecting energy and power density. Current methods 
treat SoH observation as an online parameter identification problem, employing 
equivalent circuit models or data-driven models [5].  

Equivalent circuit models, though conceptually simple, face challenges as many 
parameters vary with temperature, State of Charge (SoC), and SoH. At Chalmers, 
effective estimation tools have previously been developed under specific 
conditions, including multi-timescale SoC and SoH estimators [6]. Data-driven 
health models, using machine learning (ML) algorithms like random forest 
regression [7] and support vector machines [8], have shown promising results in 
accuracy and computation. 

The overarching challenge is to develop robust algorithms for SoH estimation and 
Remaining Useful Life (RUL) prediction. RUL prediction is crucial for cell 
selection, grouping, and cost-efficient aftermarket processes, guaranteeing the 
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lifespan of vehicle battery systems, and optimizing battery control for extended life 
[9], [10]. 

The project addresses the critical need to extend the lifespan of vehicle battery 
systems amid the increasing shift towards electrification. Achieving a fossil-fuel-
free future depends on advancements in battery technology, particularly for lithium-
ion batteries, recognized as the leading commercial energy storage source for 
vehicles. Despite improvements in quality and decreased prices, lithium-ion 
batteries remain a significant cost and environmental concern. Prolonging battery 
lifespan is vital for resource efficiency, environmental sustainability, and vehicle 
economy and reliability. 

The project tackles these challenges through the development of ML algorithms for 
SoH estimation and RUL prediction. It is funded by Swedish Energy Agency, 
enabling research and development in this critical area. The timeline for the project 
spans from August 1st, 2020 to September 30th, 2023. The project is an industrial 
PhD project and mainly to fund PhD student Yizhou Zhang for his PhD study. He 
started to work on this project since September 2020. 

Genomförande  
The initial phase of the PhD student’s research involved an exhaustive literature 
review to gain a comprehensive understanding of the state of the art in battery 
ageing diagnostics and prognostics methods. Subsequently, an in-depth exploration 
of available battery datasets was undertaken, encompassing both laboratory cycling 
data and commercial vehicle fleet data. The laboratory cycling dataset, 
characterized by meticulously recorded reference performance tests conducted in a 
controlled environment, served as an ideal testbed for validating the algorithms 
developed in this project. Conversely, the customer fleet dataset was instrumental 
in representing real-world scenarios, allowing for the verification of the practicality 
and efficacy of the proposed methods throughout the project. To streamline the 
utilization of these datasets, a systematic data processing pipeline was 
implemented, ensuring the methodical filtration and storage of relevant data for 
subsequent algorithm development. 

Online battery aging trajectory prediction using histogram data 
Precisely forecasting the aging trajectory and remaining useful life of batteries is 
crucial, not only for ensuring the safe and reliable operation of electric vehicles 
(EVs) but also as a fundamental step towards health-conscious battery usage and 
the assessment of residual value. The inherent non-linearity, diverse operating 
conditions, and variations between individual cells present formidable challenges 
in accurately predicting battery health. These challenges are particularly 
pronounced when dealing with batteries operating under real-world conditions. A 
method that systematically addresses these complexities and is applicable to the 
operational data of batteries in the field is of great importance. 

The paramount significance lies in the application of data-driven methods to 
process the dataset and formulate pertinent and efficient input features. Figure 1 
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provides a visual representation of the three raw datasets employed in this study. 
Subfigures (a)-(c) depict the laboratory cycling data from over 100 lithium iron 
phosphate (LFP) batteries, while (d)-(f) showcase the laboratory cycling data from 
approximately 20 Lithium cobalt oxide batteries. Additionally, (g)-(l) represent 
datasets derived from real-world vehicle fleets, encompassing data from over 7000 
in-service plug-in hybrid vehicles. 

 
Figure 1. Illustration of three battery datasets used for algorithm development, validation, and tests.  

While the battery aging process is intricate, the stress factors contributing to 
capacity fade remain consistent [11]. According to [12]–[16], several factors 
significantly influence battery capacity degradation, including Depth of Discharge 
(DoD), charge and discharge current rates, temperature, voltage, accumulated 
cycling/calendar time, accumulated ampere-hour (Ah) throughput, and SoC. These 
widely acknowledged stress factors are utilized in a two-step process to construct 
an initial feature pool.  

In the first step, raw data, presented in either time series or histograms of various 
dimensions, undergoes transformation into 1D histograms. Figure 2(a)–(c) 
illustrates this transformation process and its outcomes for time series laboratory 
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data from the NASA dataset, utilizing a current interval of 0.5 A. Similarly, (f)–(h) 
depict the transformation process and results for a 2D histogram derived from the 
fleet dataset. The second step involves the extraction and calculation of statistical 
properties from the constructed 1D histograms produced in the first step. Figure 
2(d), (e), (i), and (j) showcase a selection of these statistical properties and their 
corresponding calculated values. This comprehensive approach ensures that the 
essential stress factors influencing battery capacity degradation are captured and 
integrated into the subsequent analysis. 

 
Figure 2. Illustration of the feature engineering process.  

The battery aging prognosis task is cast as a regression problem within the 
framework of supervised ML. The comprehensive pipeline for executing this task 
encompassing both an offline path for global model development and an online path 
for model adaptation, incorporating streaming data. 

The global models are exclusively developed from the offline training dataset, 
comprising multiple battery cells of the same type. Each model strives to 
comprehend the averaged aging behavior based on the selected features from these 
cells. The model development process involves hyperparameter tuning, method 
selection, model evaluation, and online deployment. Among the diverse set of ML 
methods available for nonlinear model regression, namely Support Vector 
Regression (SVR), Random Forest Regression (RFR), Gaussian Process 
Regression (GPR), and Artificial Neural Network (ANN). 

When forecasting capacity changes using a global model, only the future model 
inputs (features) of the specific cell in question are utilized. The resulting prediction 
is essentially an open-loop model-based simulation. To clarify, the predictor is 
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unaware of any cell-specific aging behavior, even in cases where a cell deviates 
significantly from others. The historical capacity profile of a cell can potentially 
contain valuable information for understanding its future aging characteristics. 
With this insight, we aim to develop an individualized prediction model for each 
battery cell by directly adjusting the outcomes of the global model. 

The adjustment factor, which varies over time, is determined online based on the 
disparity between the historically predicted output trajectory by the global model 
and the measured trajectory from the cell under consideration. This adaptive 
approach allows the prediction model to dynamically account for and respond to 
the unique aging patterns exhibited by each battery cell, offering a more 
personalized and accurate prognosis over time. The overall battery aging trajectory 
prediction using histogram data is illustrated in Figure 3. 

 
Figure 3. Pipeline to develop data-driven algorithms for battery ageing prognosis. (a) summarises 
all the required modules and their connections. (b) zooms in on the online adaptation module, where 
both the global model-based predictions and the individual cell’s historical information are utilized. 

Battery state of health (SoH) estimation under arbitrary usage conditions 

Accurately estimating the State of Health (SoH) of batteries is essential for ensuring 
the safety, reliability, and optimal energy and power management of electric 
vehicles. However, from a data-driven perspective, challenges arise due to dynamic 
vehicle operating conditions, stochastic user behaviors, and cell-to-cell variations, 
making the estimation task inherently challenging. Our goal is to develop a method 
that can be applied under arbitrary customer usage conditions while maintaining 
high accuracy and robustness. 

To achieve this, the dataset employed for model development and validation aims 
to closely represent real-world battery usage scenarios. The dataset utilized in this 
study was obtained from Sandia National Laboratories (SNL) [17]. The 
experiments conducted initially aimed to investigate the impact of various stress 
factors, such as discharge rate, depth of discharge, and environmental temperature, 
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on the degradation performance of commercial cells with different chemistry types. 
Specifically, cells with Nickel Manganese Cobalt (NMC) and Nickel Cobalt 
Aluminum (NCA) as the positive electrode were selected for analysis. Figure 4(a) 
and (b) depict the capacity retention trends of the NMC and NCA battery cells, 
respectively. During the reference performance tests, where all cells were charged 
under 0.5C, we accumulated the capacity during the charging phase and utilized the 
calculated result as the ground truth for battery capacity. The objective of this work 
is to estimate this capacity value in real-time, concurrent with battery usage. Figure 
4(c), (d), and (e) provide examples of the current, voltage, and temperature curves, 
respectively, during a typical charge and discharge cycle. 

 
Figure 4. Illustration of the battery dataset used in the work. 

Practical battery usage is dynamic and subject to frequent changes in operating 
conditions, especially in shared EVs. Temperature variations also impact battery 
performance. Unlike laboratory cycling, where conditions are controlled, real-
world usage is unpredictable. Charging profiles are more controllable than 
discharging profiles. This study focuses on charging curves to estimate capacity, 
eliminating assumptions from lab tests. It considers various charging scenarios, 
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categorizing them into six distinct cases (S1–S6), including both CC-CV charging 
and other strategies. The charging scenarios are categorized as follows: 

S1: Complete CC-CV charging from 0% to 100% State of Charge (SoC). 
S2: Partial CC-CV charging starting before the Inflection Point (IC) peak value, 
ending with the complete CV phase. 
S3: Partial CC charging starting before the IC peak value, ending without the CV 
phase. 
S4: Partial CC-CV charging starting after the IC peak value, ending with the 
complete CV phase. 
S5: CC charging starting after the IC peak value, ending without the CV phase. 
S6: All other scenarios not covered in S1–S5. 

Two sets of features are chosen from the measured charging signals: one derived 
from a specific voltage window and the other from the incremental capacity curve. 
The evolution of the selected features over the battery’s lifetime is illustrated in 
Figure 5. 

 
Figure 5. Illustration of the varying health indicator as the battery gradually aged. (a) shows the 
change of the voltage curve along with an illustration of different charging scenarios. (b) represents 
the change in the current curve. (c) shows the change in the IC curve. 

Given that the estimation result may influence decisions, corrective actions, or 
proceed to the prognostic step, it is crucial to evaluate estimation uncertainty. Four 
ML algorithms, two probabilistic (GPR and Bayesian ridge regression) and two 
frequentist-based (RFR and ANN), are chosen to develop models for capacity 
estimation. All these algorithms can quantitatively propagate their estimation 
uncertainty, providing a confidence interval for their results. Henceforth, the ML 
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algorithm output, denoted as battery capacity (Q), will be referred to as y, and the 
corresponding features as x. Random-search hyperparameter tuning, along with 5-
fold cross-validation, is applied to identify the optimal hyperparameters for each 
ML algorithm. Due to different characteristics, the optimal algorithm may differ 
based on the datasets and the operating conditions of the battery. To obtain a more 
accurate and reliable estimation of battery capacity, we employ a Kalman Filter 
(KF) to fuse the results of all algorithms. The overall battery SoH estimation 
pipeline is illustrated in Figure 6. 

 
Figure 6. The overall battery SoH estimation pipeline. 

Early prediction of battery lifetime using both time-series and histogram 
usage data 
Forecasting the lifespan of a battery proves challenging due to the inherent 
complexity of the battery aging process and external factors such as manufacturing 
variations and diverse usage patterns. The intricacies are heightened when 
attempting early predictions, given the non-linear nature of aging and the subtlety 
of capacity retention issues. Nevertheless, the significance of accurate lifetime 
prediction is immense, offering the potential to minimize lengthy and exhaustive 
testing periods, strategically plan for predictive maintenance, and substantially 
enhance overall battery efficiency. The majority of current research emphasizes the 
utilization of measured time-series data for predicting battery lifespan. However, it 
is crucial to recognize that the operating conditions of the battery significantly 
influence its longevity. To my knowledge, there is a notable absence of studies 
incorporating such usage information for early forecasting of battery lifespan and 
exploring its correlation with methodologies relying on time-series measurements. 

In this study, Stanford dataset (introduced in the first part of the work) and SNL 
(introduced in the second part of the work) dataset are used to verify the proposed 
algorithm.  

Battery lifespan is significantly influenced by usage patterns. Combining historical 
usage data and predicted future patterns improves prediction accuracy. Stress 
factors, like depth of discharge, charge/discharge rates, and temperatures, are 
crucial [11]. In the Stanford dataset, features are based on unique charging policies. 
Statistical properties of charge current intervals are calculated to reduce 
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dimensionality. SNL dataset features include initial SoC, DoD, discharge current, 
and temperature statistics. This comprehensive approach enhances battery lifespan 
prediction. 

Fixed charge/discharge policies cause gradual changes in current and voltage 
curves as batteries degrade. Intentional feature construction from time-series 
measurements aids battery lifespan prediction. Investigating dQ(V) and 
incremental capacity (IC) curves, which reflect hidden aging mechanisms, proves 
useful. We adopt dQ(V) and IC curves during discharge as baseline features for the 
Stanford dataset, and for the SNL dataset, we use the charge part of the profile as 
the baseline features. The overall battery early life prediction pipeline is illustrated 
in Figure 7. 

 
Figure 7. The overall battery early life prediction pipeline. 

The early prediction of battery lifespan is approached as a regression problem, 
aiming to minimize the disparity between measured lifetime and model predictions 
across all test set batteries. Four ML algorithms are examined for their performance 
in this context. Two linear models, elastic net (EN) and Bayesian ridge regression 
(BRR), are considered, alongside two nonlinear models—support vector regression 
(SVR) and random forest regression (RFR). 

Lifelong estimation of lithium plating potential 
Navigating the trade-off between fast charging and prolonged battery lifespan poses 
a persistent challenge. We first experimentally dive into resolving this dilemma by 
showcasing the effectiveness of employing a controlled anode potential fast 
charging strategy. This strategy is designed to concurrently achieve rapid charging 
and an extended battery lifetime. To further enhance our approach, we introduce a 
battery aging mode quantification algorithm. This algorithm allows us to estimate 
critical parameters such as capacity, loss of lithium inventory (LLI), and loss of 
active materials (LAM) in the electrodes. Remarkably, these estimations are 
derived solely from practical and accessible partial slow charging voltage curves. 
Subsequently, we propose a framework for estimating the lifelong battery anode 
potential. This framework leverages both the quantified aging mode and real-time 
measurements of current, voltage, and temperature. The ultimate goal is to facilitate 
health-conscious fast charging for batteries. Our comprehensive framework 
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undergoes training and testing using an extensive synthetic dataset covering over 
1,500 aging trajectories. The results demonstrate its robustness and highlight its 
potential for implementation in Battery Management Systems (BMS). Noteworthy, 
the framework exhibits high accuracy even under realistic measurement 
uncertainties and biased aging mode estimates, emphasizing its suitability for 
practical applications. The detailed framework is illustrated in Figure 8.

 
Figure 8. The schematic of workflow for lifelong battery anode potential estimation. 

Resulted 

Online battery aging trajectory prediction using histogram data 

The global model aging trajectory prediction results using the Stanford dataset is 
shown in Figure 9 and the numerical results is shown in Table 1. The mean absolute 
percentage error (MAPE) of less than 1.7% and a root mean squared percentage 
error (RMSPE) of less than 3.3% is achieved with the best performed global model. 
Additionally, the majority of predicted capacity values for the 40 LFP cells in the 
test set fall within ±5% error bounds, as depicted in Figure 9(a)–(e). These findings 
affirm the reliability of the proposed global models in predicting the lifelong 
capacity profile for unseen battery cells. Both the constructed histogram-based 
features and the proposed feature engineering method prove effective across 
various ML methods, including SVR, RFR, GPR, and ANN. Notably, RFR and 
ANN outperform alternatives, achieving MAPE errors of 0.93% and 1.13%, 
respectively. The small prediction errors and robust performance across the entire 
capacity range position the proposed models competitively against prevalent 
models developed directly from time series data. 
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Figure 9. Validation of the developed global models and online adaptation algorithm using the 
Stanford dataset. (a)–(d) show the predicted capacity by SVR, RFR, GPR, and ANN, respectively, 
versus the measured capacity 𝑄. One specific cell, ‘b2c47’, shows an abnormal long lifetime 

compared to others with similar cycling conditions and is highlighted in dark grey. (e) presents the 
percentage error histogram of the four ML methods to predict the capacity trajectory, in which the 
predictors stand at the first data sample. (f) shows root mean squared percentage error using the 
RFR-based global model and the individualised model. (g) represents the prediction results for a 
randomly selected cell, ‘b4c36’, and (h) for the abnormal cell ‘b2c47’. 

Table 1. Prediction error comparisons of four different ML algorithms on three distinct datasets. 

 
The prediction performance of individualized models, using RFR as an example, is 
illustrated in Figure 9(f). In the best case, the individualized model reduces the 
prediction error by 13.7%, with an average improvement of 8.6%. These 
enhancements are noteworthy for battery aging and lifespan prognosis, particularly 
in applications related to health optimization and extending the lifespan of 
numerous battery cells. Beyond handling all testing cells in a batch, we explore the 
performance of online adaptation for individual cells. As shown in Figure 9(f)–(h), 
for both the abnormal cell ‘b2c47’ and the normal cell ‘b2c35’, the individualized 
model effectively learns from historical aging information, continuously adjusting 
global predictions along aging trajectories to approach the ground truth. This results 
in more accurate and robust predictions. 

After demonstrating effectiveness on the Stanford dataset, we extend the evaluation 
of the designed algorithms to battery cells within the NASA and vehicle fleet 
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datasets. The calibrated capacity profiles in the NASA dataset occasionally exhibit 
local peaks, potentially resulting from drifted measurements. In the fleet data, 
capacity measurements are generated by onboard ECUs, with unknown accuracy. 
In such cases, we treat all measurements as ground truth, acknowledging this might 
slightly impact numerical results—a common consideration in real-world battery 
data studies. Results for these datasets are presented in Table 1 and Figure 10. 

 
Figure 10. Comparison of the RFR-based global model and the individual model for predicting 
battery capacity of the NASA dataset. 

In the fleet dataset, global models based on various ML methods exhibit nearly 
identical prediction errors, approximately 1.45% in MAPE and 2.15% in RMSPE. 
Despite slightly lower performance in the NASA dataset, with a MAPE of 3.23%, 
this error level remains suitable for many industrial applications that often require 
errors to be below 5%. These findings underscore the effectiveness and practicality 
of histogram-based models for battery aging prognosis.  

The online adaptation algorithm is tested on the NASA dataset, confirming its 
effectiveness in improving model accuracy and robustness in the presence of cell 
variations. As illustrated in Figure 10, the individualized model consistently 
reduces prediction errors at nearly every prediction start index, achieving a 
maximum reduction of 7.5% in RMSPE. Similar to the results in Figure 9(g)–(h), 
the individualized model closely tracks the measured capacity profile compared to 
the global model. Importantly, this holds true regardless of whether the global 
model overpredicts or underpredicts measured values, and the performance is 
sustained even when battery degradation exceeds 50% of the nominal capacity. 

Battery state of health (SoH) estimation under arbitrary usage conditions 

The estimation errors of various SoH estimation algorithms are quantitatively 
studied for NMC-type batteries, with the results detailed in Table 2. Across 
scenarios S1 to S5, all the ML models derived, including the Kalman Filter (KF), 
achieve reasonable estimates, with a MAPE ranging from 0.629% for the best case 
to 2.27% for the worst case. In the uncommon scenario S6, where batteries operate 
under a full lifespan, the proposed model fusion method estimates the capacity 
trajectory at a MAPE of 3.899%.  
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Table 2. Results of different SoH estimation algorithms for NMC batteries under Scenarios 1-6. 

 
Results in Table 2 also confirm the superiority of the proposed KF-based fusion 
method, generally outperforming or matching the best-performing individual 
model. Figure 11 provides a closer look, showing that under the first five scenarios, 
the KF rarely exceeds ±5% error, with results within ±2.5% error for scenarios S1–

2. Figure 12 demonstrates that under S1, KF follows the measured capacity better 
than the best individual ML model, namely RFR. 

 
Figure 11. The estimation results for the NMC-type battery under different charging scenarios. 

 
Figure 12. Estimation results of a randomly selected NMC-type cell under Scenario 1. 
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All developed models provide a 95th percentile estimation confidence interval 
valuable for predictive battery maintenance and usage optimization. Fusion of 
estimation results using KF significantly tightens the confidence interval, reducing 
uncertainty (Figure 13). After the seventh index, the standard deviations of the best 
and worst individual models are 2 and 5 times larger than one KF has, respectively. 

 
Figure 13. The standard deviation of the results from the individual ML model and the model fusion 
for a randomly selected cell. 

In practical scenarios, it's uncommon for a battery to undergo only one charging 
profile throughout its entire lifespan. Hence, it's valuable to explore estimation 
performance when various charging profiles are applied to a specific battery. As no 
cell in the database underwent multiple charging profiles, cells experiencing full 
CC-CV charging were selected, and their profiles were manually truncated to 
mimic partial charging. While these results may not precisely reflect real-world 
usage, the focus here is on qualitative outcomes. Charging profiles for each cell are 
assumed to rotate periodically among six scenarios during its lifetime, with rotating 
protocols and results detailed in Table 3. Features are extracted based on each 
scenario's availability. It can be seen that, under S6, where no time-series feature is 
available, individual estimation models cannot estimate the capacity value. In such 
cases, when S6 is activated, the capacity remains unchanged from the previous 
time-step estimate. Table 3 illustrates that within each protocol, the KF consistently 
outperforms any individual ML model in providing better estimation results. When 
S6 is activated more frequently, the estimation results of the individual models 
generally become worse. On the contrary, the KF is still very reliable and 
continuously follows the ground truth at around 1 % RMSPE. 
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Table 3. SoH estimation results under various practical charging scenarios. 

 

Early prediction of battery lifetime using both time-series and histogram 
usage data 
Initially, only cycling information from the first 100 cycles is used for prediction. 
Subsequently, we change the number of early life cycles to examine its sensitivity 
to prediction results. To compare prediction performance using different feature 
sources, we apply the same machine learning algorithm, RFR in this case, trained 
with different feature inputs. Results are summarized in Table 4. 
Table 4. Results of different feature inputs and two combination methods for early prediction of 
battery lifetime using Stanford dataset. 

 
Observing the table, it's apparent that the prediction performance using either time-
series features or usage-related histogram features alone is similar in terms of 
MAPE, with the histogram feature-based algorithm slightly outperforming the 
time-series features. This suggests that the two feature sources are effectively 
interchangeable for battery life prediction. However, when both feature sources are 
combined, a significant performance improvement is achieved, indicating that the 
two feature sources are complementary and should be used together when possible. 
Examining detailed prediction results in Figure 14, the model trained with 
combined features tends to violate the ±100 cycles prediction boundary of the 
measured lifetime less than when using individual feature sources. Zoom-in figures 
display the error histogram of prediction results using different feature sources, 
again showing the superiority of combining both feature sources, including less 
extreme predictions and a narrower error distribution. This superiority arises from 
the fact that usage-related features can indicate how cycling profiles affect battery 
life on average, while time-series features identify cell-to-cell variations. 
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Figure 14. Prediction results using different feature inputs extracted from the Stanford dataset. (a) 
Using time-series features only. (b) Using usage-related histogram features only. (c) Using both 
feature sources. 

Instead of combining the feature sources and training one ML algorithm, an 
alternative option is to train two ML algorithms using all the feature inputs and fuse 
their prediction results. The last row in Table 4 shows the numerical result of 
training two RFR prediction models and then fusing the prediction results using an 
appropriate method, such as an ensemble approach. Not surprisingly, the obtained 
results are similar to those achieved by using combined features to train a single 
ML algorithm. 

In addition to the prediction results obtained using the first 100 cycles, we assess 
the robustness of the developed methods by varying the early life data from 20 to 
300 cycles, as shown in Figure 15. It is noteworthy that incorporating usage-related 
features can significantly enhance prediction accuracy compared to the case of 
using only time-series features, especially in early prediction scenarios. For 
instance, when utilizing the first 20 cycles, prediction accuracy can be improved by 
around 45%. Furthermore, the consistent superiority of using combined features is 
observed across the entire examined range of [20, 300] cycles, underscoring the 
importance of including such information in the feature construction step. 

 
Figure 15. Prediction error as a function of prediction start cycle number. 

Lifelong estimation of lithium plating potential 

Figure16(a) provides an overview of the results from the three-electrode battery cell 
aging test. The benefits of employing an anode potential control (CC-Cη) charging 
strategy become evident when compared to the conventional CC-CV charging 
strategy. Notably, the overall lifetime of the CC-Cη group shows a remarkable 
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doubling compared to the group utilizing the CC-CV charging strategy. 
Furthermore, the charging speed of the CC-Cη group is observed to be 30% faster 

at the initiation of the battery's life and increases to 40% after 200 cycles, as 
depicted in Figures 6(b)–(e). This underscores the dual advantage of the anode 
potential control charging strategy: not only does it extend the battery's lifetime, but 
it also reduces charging time. It is crucial to highlight a notable observation in the 
aging curve of the CC-CV group. There is a sharp reduction in capacity at the early 
stages, followed by a stabilization of the degradation rate. We posit that this 
phenomenon may be attributed to the onset of lithium plating, even occurring at the 
conclusion of the battery's very early life. This is evident in Figure16(c) and (e), 
where the anode potential turns negative during the initial cycle. 

 
Figure 16. Three-electrode cells test results. 

Overall, the estimation results using the proposed framework is really promising 
and a random selected cell are chosen to demonstrate the effectiveness of the 
algorithm as shown in Figure 17. 
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Figure 17. Anode potential estimation results of a randomly selected cell over its entire lifetime. 

Diskussion 
In this project, we have developed accurate, reliable, and practical methods for 
diagnosing the state of health, prognosing the future aging trajectory, and predicting 
the remaining useful life of lithium-ion batteries. These innovative methods are 
sufficiently generic and can be applied equally to various types of lithium-ion 
batteries and other battery chemistries. The improved estimation and prediction of 
battery aging can result in significant benefits, including:  increased battery 
reliability, reduced costs for battery inspection, maintenance, replacement, and 
associated warranty and insurance services, facilitation of second-life battery usage 
and after-market treatment, and provision of a solid foundation for enhancing 
battery health. These results can be leveraged by battery design and manufacturing 
industries, battery management services, electric vehicle (EV) companies, 
insurance and traffic logistics providers, as well as regulatory and policy makers.   

Furthermore, we proposed a machine learning-based lifelong estimation method for 
lithium plating potential and used it for health-aware fast battery charging. Through 
extensive simulations and lab-scale coin cell tests with specific sensors, we have 
demonstrated the capability to achieve both faster charging and a 100% longer 
battery lifetime. This advancement is poised to significantly enhance the 
convenience and acceptance of EVs, thereby expediting the transition to a 
sustainable transport system. The substantially extended lifetime will directly 
contribute to significantly enhanced sustainability. If successfully implemented in 
real-world EVs, it has the potential to reduce CO2 emissions by 6.54 g/km, a 
substantial figure aligning with the global goal of carbon neutrality.   

The generated scientific results have been documented and resulted in 4 peer-
reviewed articles published on top-tier journals, 3 peer-reviewed articles published 
on leading international conferences, 2 journal articles under review, and 1 
European patent application. Additionally, the results have been disseminated 
through six oral presentations/invited talks and a set of newsletters, e.g., on websites 
of Chalmers, CEVT, and the Swedish Electromobility Center. 
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The next phase involves employing the developed ageing prediction models for 
optimised battery lifetime and expanding the fast charging results from simulation 
and tailored lab-scale coin cells to real-world commercial batteries. Fortunately, we 
have secured a new research grant, “Datadriven förlängning av livslängden och 
optimering av prestanda för fordonsbatterisystem” (Project no. P2023-00611), 
funded by the Swedish Energy Agency through the Vehicle Strategic Research and 
Innovation Program. 
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