


ARTICLE TEMPLATE

Modeling Aggregation of Multi-Family Building loads for Demand

Response Analysis

Claes Sandelsa and Joakim Widénb
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ABSTRACT

Demand Response (DR) could potentially solve issues related to mismatch of sup-
ply and demand in power systems. Multi-family buildings are a suitable customer
category for DR as these stands for a large share of the heating demand on a na-
tional scale. This paper presents a bottom-up simulation model that can generate
multifamily building load profiles representative for Northern Europe. The model
connects behavioral aspects of residential end-users with energy usage from appli-
ances and heating of buildings.

Two cases are simulated to validate and demonstrate the model. The validation
data set is collected from a multi-family building complex in Sweden. The data
includes hourly measurements for heating demand and indoor temperature for one
year. The validation shows that the simulated load captures the general trend of the
data well, although the peak loads are generally underestimated. Furthermore, the
model capabilities to simulate loads from aggregations of buildings are demonstrated
by using building stock statistics from national databases. The demonstration shows
that the model can output load diverse load profiles from different building types and
heating installations. The model can be used for analyzing large-scale DR scenarios
in the power systems.

Multi-family building, Aggregations, HVAC system, Markov-chains, Lumped capac-
itance, Demand Response.

1. Introduction

The electric power systems are being transformed through integration of intermittent
renewable energy resources and new types of electric loads. These developments will
introduce imbalances between electricity supply and demand, along with voltage and
congestion management issues. A promising solution to overcome these challenges is
Demand Response (DR), where customers are flexible in their electricity consump-
tion with respect to external price signals Siano (2014). DR is facilitated by ongoing
advancements in the digital economy OECD (2015), deregulation of energy markets
Albadi and El-Saadany (2007), and increased electrification of the residential sector
with heat pumps The Swedish Energy Agency (2009) and electric vehicles IEA (April,
2013).
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Multi-family buildings have a DR high potential as they stand for a significant
share of the national energy-use, e.g. 30 % of the space heating and Domestic Hot
Water (DHW) demand in Sweden. For now however, only around 10% of the Swedish
multi-family buildings are primarily heated by electricity through Heat Pumps (HP)
or electric radiators The Swedish Energy Agency (2013). Installing HPs at the building
site may get more popular in the future because of technology developments, reduced
investment and operational costs, together with growing fees for using District Heating
(DH) systems. Today, a majority of the Swedish multi-family buildings have DH as
their primary heating source. It is believed that DH networks could support the electric
power grids with balancing power from, e.g. heat pump units Averfalk et al. (2017).
Multi-family buildings have an interesting role to play in these contexts.

It is yet uncertain how flexible multi-family buildings can be in their consumption.
To estimate this potential, improved knowledge and modeling techniques on the load
characteristics are required. Fundamentally, the consumption can be modeled as a
stochastic process, influenced by multiple factors: (i) the building properties, (ii) the
available appliances, (iii) the load parameters of the appliances, and (iv) the usage of
appliances. By far, factor (iv) is the most complicated factor to estimate, as it is con-
nected to weather dynamics and the behavior of the occupants Widén and Wäckelg̊ard
(2010). For example, presence is a necessary condition for some energy use, such as
computers and lighting Page et al. (2008). This usage, along with occupancy, generates
internal gains, which together with the weather affect the indoor temperature. The
space heating system will output the required heating or cooling energy to maintain a
reference indoor temperature. These types of load characteristics are highly dynamic,
and will vary between hours, days and seasons. Consequently, this will put prerequi-
sites on the flexibility potential. In future energy systems where DR may be required,
it will be important to understand these connections for the building stock.

Bottom-up simulation models are needed to capture consumption processes on load-
level Swan and Ugursal (2009). As opposed to top-down models, bottom-up models
start from the lowest level of components (e.g., an appliance), and the aggregates
the loads from a building, district or city level. The main advantage of a bottom-
up approach is that characteristics of individual loads can be represented. This is
important in DR analysis as the flexibility ultimately is provided by single loads, e.g.
EV batteries, dishwashers or heat pumps. On the other hand, modeling electricity
consumption processes in buildings with a bottom-up approach is challenging because
of two reasons.

Firstly, to accurately predict the heating dynamics and temperature variation for a
specific point in a building, complex heating models need to be formulated with de-
tailed building based software, e.g. EnergyPlus EnergyPlus (n.d.) or DOE-2 DOE-2s
(n.d.). However, these software require extensive knowledge about the building param-
eters, and the resulting models tend to be computationally cumbersome and difficult
to scale Pŕıvara et al. (2013). Secondly, as individual buildings only can contribute
with a small volume of flexibility, a larger group of buildings is required. Every build-
ing is unique with respect to building design, used materials, landscape orientation,
household behaviors, etc. Hence, detailed and accurate models have to be developed
for each individual building, implying a huge modeling effort, which may lead to signif-
icant costs in both time and money. Therefore, it is necessary to use building models
which makes it possible to aggregate the consumption of several buildings, meanwhile
being able to reflect unique consumption patterns of individual buildings. Preferably,
such models are simplified and standardized to minimize the demand for input data,
parameter value estimations, and model assumptions. Such models will simply and
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enable modeling activities of DR scenarios in future electricity systems.

1.1. Related Work

Several models for simulating end-user load profiles in buildings that can be used
for DR applications are proposed in literature. These are bottom-up models that are
constrained by specific conditions of a country or region. Other modeling techniques,
e.g. time series and econometric models are not appropriate as these generally produce
data on an aggregated scale, i.e. no electricity use information on appliance level is
derived.

In Sandels, Widen, and Nordström (2014) and Sandels et al. (2016), bottom-up load
models for detached houses and office buildings are presented. The model combines
activities of occupants and their interaction with appliances based on time-use data
(TUD), along with physical properties of the building envelope. By validating the
simulation results on real load measurements, it is concluded that the models produces
representative load profiles. Similar models in residential settings are presented in
Widen, Molin, and Ellegard (2012), Richardson et al. (2010) and Fischer, Härtl, and
Wille-Haussmann (2015).

Multi-family building loads are modeled by in Fischer et al. (2014). In this paper,
the authors introduce and evaluate a range of cost minimization operational strategies
for capacity controlled HP:s with thermal storage. The heating operation is modeled
with model predictive control together with simplified models of the heating demand
in buildings, thermal storage, HP operation and its controller. The simulation results
show that HP operation that accounts for variable day-ahead prices leads to decreased
operation efficiency but improved economy. A similar study can be found in Verhelst
et al. (2012), where the controller aims to minimize the weighted sum of electricity
cost and thermal discomfort of the occupants. Note, in these papers physical models
of the HVAC systems are prioritized, thus, no behavioral attributes of the end-users
are considered.

A dynamic pricing framework for DR in low voltage networks is described by
McKenna and Keane (2016). The model simulates occupancy and appliance usage
through non-homogenous Markov chains with TUD from Ireland IRI (2013). Data
from an Irish residential distribution feeder with 85 buildings is then simulated for a
typical winter day. The simulation results of DR scenarios show a negative technical
impact for the DSO operation as the load diversity between end-users decrease as the
load becomes more correlated with price, and less with individual behavior. Steen,
Tuan, and Carlson (2016) presents a comparable study, which models 100 detached
houses in a low voltage grid in Sweden to investigate the impact of dynamic tariffs on
the grid operation.

Yao and Steemers (2005) presents a simplified load model which simulates the daily
household load for four different dwelling types in the UK. The model accounts national
statistics on appliance ownership, energy-use characteristics of these, and household
types. Occupancy patterns are modeled through five standardized scenarios, which
depend on number of occupants, when the first person get up in the morning, the
last individuals go to bed at night, and the period that the building is unoccupied
over the day. By combining appliance statistics and occupancy profiles with a random
uniform probability distribution function, daily load profiles can be simulated for an
individual household. Similar high level building stock load models based on national
statistics are found in Shao, Pipattanasomporn, and Rahman (2013) and Zhou, Zhao,
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and Wang (2011).
Moreover, Baetens et al. (2012) studies how Zero-Energy Buildings (ZEB) with PV

impact the voltage quality in low voltage distribution network. The ZEBs are mainly
characterized by the presence of high efficient energy technologies, and integration of
RES. A holistic energy model is proposed to replicate thermal and electric processes in
the buildings, with models for PV production, occupancy behavior based on Markov
chains, and general appliance consumption is mainly based on Belgian statistics. Four
different dwelling types which are representative of the Belgian building stock are
proposed. A neighborhood of 33 Belgian ZEBs is simulated with respect to energy
consumption features.

1.2. Scope of the paper

The scope of this paper is to present a bottom-up simulation load model for multi-
family buildings. The consumption includes appliances (e.g. lighting and TV), DHW,
and space heating. The main goal with the model is to be able to simulate load profiles
from an aggregation of buildings with reasonable accuracy that can be suitable for DR
scenario analysis.

To verify that the model can output reasonable load profiles, a data set has been
collected for model validation. The data set includes detailed background information
about a real multi-family building in Sweden, together with energy-use measurements
at an hourly time resolution. Another case is to demonstrate the model capabilities
to simulate loads from multiple buildings by input parameter values collected from
national statistics.

As opposed to the models described in the related work, the simulation model
proposed in this paper focuses on occupant activities and their interactions with ap-
pliances and indoor comfort in the loads from aggregations of multi-family buildings.
McKenna and Keane McKenna and Keane (2016) model such behavior as well, but
only for end-users in detached houses. Multi-family building loads are modeled by
Fisher et al Fischer et al. (2014), but it excludes end-user behavior. In addition, sys-
tematic validation of simulation results against real energy measurements from a case
study is included in this paper, which is lacking in the related work studies.

The model is implemented in MATLAB Mathworks (October, 2018a), where the
built-in Statistics Toolbox package is used Mathworks (October, 2018b).

1.3. Outline

The paper is structured as follows. In Section 2, the proposed multi-family building
simulation model is presented. The data sets that are used for model validation and
demonstration are introduced in Section 3. It is followed in Section 4 by simulation
results and analysis of the data sets. Section 5 contains a discussion of the results, and
some concluding remarks are given in Section 6.

2. Model description

In this section, the methodology of the multi-family building load model is described.
The model has three modules that reflect important energy-use related processes in
buildings: (i) the behavior of end-users, (ii) the usage of appliances and DHW which
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The simulation period is Nsim time steps, where ∆t = tk+1 − tk.

2.2. Behavior module

The behavior of individual household members is simulated with a non-homogeneous
Markov chain methodology. Unlike the Markov chain model in our previous study
(Sandels, Widen, and Nordström 2014), which consisted of two separate Markov chains
for electric appliance activities and DHW activities, the model used here contains all
activities in the same Markov chain. This yields more realistic profiles, as it makes
sure that incompatible activities, e.g., showering and watching TV, are not performed
at the same time by the same person.

The Markov chain has 11 states (denoted as the set Ω), where states 1-2 are ’away’
and ’sleeping’, states 3-8 are related to appliance use (’cooking’, ’dish washing’, ’wash-
ing’, ’TV’, ’computer’, ’audio’), states 9 and 10 are ’bathing’ and ’showering’, and
state 11 is ’other’ (all other unspecified activities). All states except the two hot-water
related states are thus the same as in the original Markov-chain model proposed by
Widén and Wäckelg̊ard (2010).

Transition probabilities pij(t) define the likelihood for transitions from state i to
state j between time steps t − 1 and t. Note that Σi∈Ω

j=1
pij = 1 because one of the

possible transitions from state i must take place. An activity profile is generated by
randomly sampling a number between 0 and 1 in each time step and comparing it
to the transition probabilities. The transition probabilities are allowed to change over
time to reflect that some activities are more likely to occur during certain times of
day, e.g., sleeping at night and being away during working hours.

The transition probabilities are estimated with TUD collected by the Statistics
Sweden (SCB) in 1996 Elleg̊ard and Cooper (2004). These data are more than 20
years old, but they are the most detailed ones available, and it has been shown that
the crucial activities related to energy use still yielded valid load profiles 13 years
later Widén and Wäckelg̊ard (2010), and most likely today. In total, this data set
covers the activities of 463 individuals aged 10 to 97 years in 179 households, both in
apartments and detached buildings. For this study, only data for the 69 households
living in apartments are used. The activities were recorded by the participants with
a time resolution of down to 1 minute, on one weekday and one weekend day. More
details about the TUD, estimation of transitions probabilities and the properties of
the Markov-chain model can be found in Widén and Wäckelg̊ard (2010) and Widen,
Nilsson, and Wackelgard (2009).

2.3. Appliance and DHW module

The activity profiles generated by the Markov chain are converted to electricity and
DHW profiles through three basic conversion functions: (1) constant power (or flow
rate) during the whole activity, with possible standby power between activities, e.g.,
use of TV or computer, (2) load cycle that starts with the activity and continues until
it or the activity ends, e.g., filling up a bath in the beginning of a bathing activity,
and (3) load cycle that starts when the activity ends and continues until it ends or
the activity starts again, e.g., dish washing after the activity ’fill the dishwasher’.
The exception to these simple load schemes is the indoor lighting model, which is
also dependent on total occupancy and daylight level Widen, Nilsson, and Wackelgard
(2009).
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The conversion functions for electric appliances are the same as for apartments in
Widén and Wäckelg̊ard (2010). For the DHW use, both showering and bathing are
modeled with conversion function (2) above. In addition to these, a simple model
was implemented for miscellaneous hot water tapping. These additional tapping are
randomly added with a constant probability for each household member during times
when the person is at home and active (not sleeping). For showering a flow rate of 10
l/min during 4 minutes is assumed, and for bathing a flow rate of 16 l/min during 6
minutes. Additional tapping are assumed to occur at a given minute with a probability
of 1 %, with a flow rate of 4 l/min during 2 minutes. All these flow rates and times
are chosen to comply with the DHW profiles developed within the IEA SHC Task 44
(Haller et al. 2013).

The DHW usage is converted to heat use (Qdrain) that is discharged from, e.g., a
hot water tank. Qdrain is defined as:

Qdrain(t) = V a
flow(t) · Cp,water · (Toutlet − Tinlet) [W ]. (2)

Cp,water is the specific heat capacity of water. Toutlet and Tinlet are the inlet and
outlet water temperatures, respectively. V a

flow is the total hot water flow to serve the
current DHW activity of the household member.

2.4. HVAC module

The HVAC module includes the thermodynamic processes in buildings and the usage
of heating systems to serve an indoor comfort and DHW demand. Three types of
dynamics are included in this module: (a) the heat demand of the building and DWH
usage, (b) the installation characteristics of the HVAC system, and (c) the possible
HVAC control approaches.

2.4.1. Building heat demand

A simplified lumped capacitance methodology is applied to model the building’s heat-
ing demand. The indoor temperature (T ) will deviate from a reference temperature
set point (Tref ) due to the following disturbances: (i) outdoor temperature (Tout), (ii)
DHW use, (iii) solar radiation (Psun), and (iv) internal heat gains from occupants
and appliances (Qint). Ambient leakage together with DHW usage are the factors that
drain energy from the building. The other disturbances are energy suppliers to the
building. The ambient leakage that are transferred between the indoor and outdoor
environments is determined by the conduction properties of the building envelope
(transmission losses), along with an amount of indoor air that is released from the
building (leakage/ventilation losses). Potential ventilation activities from end-users by
opening windows are excluded. The total losses Λ are given by:

Λ =
∑

j

Uj ·Aj +Vb · N̄vent · Cp · (1− αrc),

[

W
◦C

]

, (3)

where, Uj is the transmission coefficient of each building component j, and Aj is
the total area of that component. Vb is the total volume of the building, N̄vent is the
air exchange rate. Cp is the specific heat capacity of air, and αrc is the heat recycle
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coefficient. Then, the heating losses Qloss from the building to the outside environment
at time t are quantified by:

Qloss(t) = Λ · (T (t)− Tout(t)), [W]. (4)

As stated earlier, energy is supplied to the indoor environment through solar radi-
ation and internal heat gains, i.e. disturbance (ii) and (iii). Quantifying the heating
gain from solar radiation is a complex procedure. Hence, a simplified model has been
used that includes only the solar radiation against a horizontal area SMHI (January,
2015) (Gsun), the total window area per building side (Aside

window) and a reduction factor
(αred), where the solar radiation is shaded by e.g. surrounding trees and buildings, etc.
The heat contribution from solar radiation Qsun is:

Qsun(t) = αred ·A
side
window ·Gsun(t), [W]. (5)

The internal heat gain from appliances and occupants Qint at time step t is deter-
mined by the stochastic output of the behavior, DHW and appliance usage modules
as follows:

Qint(t) = Pmet ·Nocc(t) + γapp · Papp(t) + γDHW · PDHW (t) [W ], (6)

where Nocc is the number of occupants, Pmet is the heat loss constant through
metabolism, and Papp is the electricity usage from appliances. Further, PDHW is the
energy loss through DHW usage, γapp and γDHW are coefficients that determine how
much of the heat losses that are actually absorbed by the indoor environment. The
heating imbalance Qimbalance for the building at time t is the following due to the
aforementioned disturbances:

Qimbalance(t) = Qint(t) +Qsun(t)−Qloss(t) [W ]. (7)

Evidently, as all of these energy flows will not be in balance to provide a stable
indoor temperature, a space heating solution is installed to compensate the energy
imbalances over time.

2.4.2. HVAC installation

The main objective of the HVAC system is to supply heating to the building to main-
tain a predefined indoor temperature (Tref ) and to serve the DHW demand. In the
model, three parameters are considered when it comes to the physical design of the
HVAC solution: (i) the heat supply concept, (ii) the dimensioned heating capacity,
and (iii) the Coefficient of Performance (COP) of the installation.

For parameter (i), three options of heating supplies are available: monovalent, mono-
energetic or bivalent systems. A monovalent heating supply means that only one type
of heating technology is used, such as a stand-alone HP that serves the whole space
heating and DHW demand. Mono-energetic supplies refer to systems with combined
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heating technologies in a building, but which uses the same energy carrier (e.g., electric-
ity) to produce the heat. An example of this is a heating system with heat pumps that
serve the base heating load, and an electric heater that covers the peak load. The last
supply type is a bivalent system, which works in the same way as the mono-energetic
solution, but, here, at least two different energy carriers are used for supplying the
heat, e.g. a combined system with HP and district heating. The total heating power
can be represented by a base heating load (Pbase) and a peak heating load (Ppeak).

Further, the installed heating capacity of the HVAC system is set by the temperature
data from the geographic area, the thermal inertia of the building (τ), and the COP
value of the system during cold temperatures. These values will give the dimensioning
outdoor temperature (TDWT ), and, thus, the peak heating demand during very cold
days. In addition, the dimensioning of the heating solutions could also consider the
building’s expected DHW demand (P̄DHW ), introduced in the previous subsection.

Due to these arguments, the installed space heating capacity (P̂HV AC) can be given
by:

P̂HV AC = P̂base + P̂peak =
Λ · (Tref − TDWT ) + P̄DHW

COP (TDWT )
[W ]. (8)

Due to the aforementioned discussion about heat supply concepts, P̂HV AC can be
added up by different heating technologies. If the system is monovalent, one heating
solution covers the whole heating demand of the building, i.e., P̂peak = 0. If the HP

cannot cover the peak demand, a secondary heating is required (P̂peak > 0). If the
secondary heating system is bio fueled heater the system is a bivalent system, and if
it is an electric heater the system is mono-energetic. Further, the HP is dimensioned
according to the heating it can be provide during cold days. For example, if it is an
air source heat pump, the COP will decrease during cold temperature, and, will reach
zero when it is sufficiently cold. At these times, electric or district heating are required.
For a ground source heat pump the COP will be better at low ambient temperatures
compared to an air source, as the bore hole temperature is higher and more stable
than the ambient temperature.

The heating capacity of a ground source HP unit co-operating with a electric heating
as function of outdoor temperature are shown in Figure 2. As can be seen, the ground
source has a less steep heating supply line, which means it can supply more heating
energy per input of electric heating. However, the HP can only cover the demand
to a certain outdoor temperature, and thus the electric heater kicks in when the
temperature drops, with a steeper electricity use as a result. The electric heater gives
the total installed electric capacity to provide heating energy during the peak demand.
Such diagrams can be sketched for other combinations of heating solutions as well, e.g.
standalone air source heat pumps, combined ground source heat pump and district
heating, etc.

In the model, a constant COP for the space heating system is assumed over the
possible range of outdoor temperatures.

2.4.3. HVAC system control - ruled based outdoor temperature control

The controller can either be rule based or predictive. The rule based controller makes
decisions based on real time conditions, whereas the predictive controller accounts
future possible disturbances. The heating can be controlled based on various input
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3. Data collection

The data sets that are used for simulation are presented in this section. The first data
set is for a building complex and is used for model validation. The second data set is
for model demonstration and involves an aggregation of buildings. Real measurement
data is available for the first case, but not for the second case. See Figure 3 for more
information on the setup.

3.1. Data set 1: Model validation

The first data set is collected from a multi-family building complex located in the
Swedish city of Jönköping (latitude: 57.78145, longitude: 14.15618). The building has
150 apartments, with a total heated floor space of 9,500 m2. The complex is built in
the 1960s and consists of four separate buildings. The building complex has a bivalent
heating system, where two local HP:s serve the base heating load, and district heating
is used during peak demand. The HP:s are controlled on the outdoor temperature, and
district heating is used when it is colder than 7 ◦C outside. The heat is distributed to
the apartments through water based radiator systems.

To validate the simulation model, the following hourly measured data has been
collected for almost a whole year: (i) the heating use from the HP:s and district heating,
(ii) outdoor temperature at the premises, and (iii) indoor temperature measurements
from four apartments. Unfortunately, the national weather service provider does not
measure solar radiation for the concerned city, and is not measured at the building site.
Therefore, hourly solar radiation data has been collected from a weather station located
100 km south of the premises. The time period for the measurement campaign is
between 2016-09-30 and 2017-09-18. Furthermore, the required building parameters are
assigned according to a multi-family building from the 1970s specified by The Swedish
National Board of Housing, Building and Planning (2013). Note, the parameter setting
is listed in Table 1. This validation will give a justification that the heating modeling
approach of one multi-family building is sound, as detailed data about the heating and
DHW energy use, along with comfort data from different apartments are available.

3.2. Data set 2: Model demonstration

Input for the model parameters have been collected from national statistics on multi-
family buildings and HVAC system installations, in order to demonstrate the outputs
that can be produced at an aggregated scale with the simulation model. The statistics
come from Statistics Sweden SCB (n.d.) and The Swedish National Board of Housing,
Building and Planning (2013). The case includes data on thermodynamic properties
and HVAC system installations for 30 buildings. The buildings are located in the
geographic area of Stockholm, Sweden so that the same climate data can be used for
all buildings.

In the right-hand side Table 1 the parameter setting of this data set is shown. As
noted here, the parameter values have various ranges, and is randomly selected from
statistical distributions so that unique building compositions can be constructed. The
simulation time period is two winter days with a time resolution of one hour. Note, it
is only the space heating consumption that is demonstrated in this simulation.
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Table 1.: The parameters and their assigned values for the simulations of the two
respective cases.

Parameter Description Validation
case

Demonstration case

Age The construction year of the
building

1960s N(1965, 25)

Nbuildings The number of buildings Four 30
Aper,person The heated living space per

person
30 m2 30 m2

Npersons The total number of end-users 300 Two in average per
apartment

Nhouseholds The number of apartments 150 The building area from
/ (Npersons · Aper,person)

Λ The isolation factor of the
building

13.1
kW/◦C

Depends on building
age and Nhouseholds

αrc The heating recovery factor of
the ventilation system

0.0 0.0

Nvent The ventilation rate of the
building

0.2 h−1 0.2 h−1

τ The thermal inertia of the
building

100 hours 100 hours

Aside
window The total exposed window

area per building side
1000 m2 Depends on building

αred The shadowing effect of the
windows and surroundings

0.20 0.20

TSH
ref The reference indoor temper-

ature
21 ◦C 21 ◦C

COP The COP factor of the heat
pump

2.5 Bivalent: 3.8, Mono-
energetic: 3.7 at 0
◦C

TDUT The dimensioning outdoor
temperature

-14.0 ◦C -14.4 ◦C

Supply concept The heating supply concept Bivalent 70 % is bivalent, 30 % is
monovalent

Controller The control approach of the
heating system

Outdoor
tempera-
ture

Outdoor temperature

HP type The type of HP used in the
building

Ground
source HP

33 % air source HP, 66
% ground source HP

Controller The control approach of the
heating system

Outdoor
tempera-
ture

Indoor temperature

ξmax,min The threshold values of the in-
tegral control method

± 1.0 ◦C ± 1.0 ◦C

4. Simulation Results and Analysis

In this section, the simulation results from the two cases are presented. For the valida-
tion, the results are displayed together with the empirical measurements to facilitate
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Figure 4.: Examples of output data at a minute and hourly resolution for occupancy,
appliance use, and DHW use for the whole building. The subplots to the left are
minutely, and the plots to the right are hourly.

statistical comparisons. The validation results will be presented with respect to sea-
sonal and daily variation. In addition, detailed simulation results are also shown, e.g.
high resolution time series of appliance, DHW, SH usage, in order to exemplify what
kind of data that can be emulated with the simulation model. Secondly, the simulation
results for data set 2 is presented in section 4.2.

4.1. Data set 1 results

Firstly, we present high resolution plots for occupancy, appliance, and DHW use for
the data set 1 building in Figure 4. This plot is shown to give an idea of the complexity
of the output data that can be generated with the model, and to argue that the profiles
are realistic. Hourly averaged profiles (right plots) for the aforementioned variables are
shown next to the minute profiles (left plots), to indicate how much information that
is removed when averaging the data, e.g., peaks values that are smoothed out.

As seen in the upper left plots, the aggregated number of occupant people is the
highest during night. The occupancy decreases during the morning when people start
to get off to work and school, and then drops to its minimum at midday, when it finally
starts to increase again in the afternoon. For the appliance use, a steady base load can
be seen during night which is composed by stand by consumption from mainly the
freezers and refrigerators due to the fact that end-users are sleeping. During the morn-
ing hours a number of different peaks can be seen. This is linked to unique morning
behaviors of the end-users, i.e. when they get up, how they use their appliances, and
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Figure 5.: Statistical comparisons between the simulated and measured DHW and SH
load for data set 1.

leave for work. Note, the behavior model is based on averaged data, and these unique
behaviors are created through randomness in the MATLAB program. A larger peak
in the evening can be observed, which depends on coinciding behavior effects between
the households.

In the lower left subplot the minute wise DHW consumption can be studied. Here,
the morning peaks are higher than the evening peaks, i.e., opposite to the appliance
use. This is most likely linked to the DHW needs before work. When looking at the
hourly DHW use data, the morning and evening peaks look equal in amplitude. The
end-users may take more baths in the evening, which smooths out the DHW consump-
tion over longer time frames.

Moreover, simulations are performed for a full year with the parameter values spec-
ified in Table 1 and the collected weather data. The simulated and measured heating
load is plotted against the outdoor temperature in the top left plot of Figure 5 for
the whole time period. As seen, the simulated load follows the general trend of the
measured data. However, the peak loads are underestimated by the simulation model.
This could be due to higher distribution system losses in the real system which is
not included in the model. These losses can be higher during cold temperatures and
will drive the heating demand. Other explanations can be higher ventilation losses or
over-supply of heating to guarantee the indoor comfort. Moreover, in the top right
subplot the load probability distribution for both quantities are displayed. The two
distribution have similar shapes, but the measured load has higher frequency of mid
load values (e.g. 100 kW), and peak load values (over 200 kW).

In the bottom left plot, the time series of the simulated and measured indoor tem-
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peratures are shown. As seen, the variation of the measured indoor temperature is
captured to some extent by the model. For example, the higher indoor temperature
during the summer period is due to higher heat gains from solar radiation. However,
the model overestimates the temperature peaks in June because it assumes the same
type of end-user behavior and appliance use during summer which can be lower due
to vacation times. Additionally, in reality, the end-users air their apartments when
it is warm outside. This will reduce the indoor temperature even further. The model
does not account weathering by the occupants. The inaccuracies could also be because
due too gross control, where only outdoor temperature is the input. Mosty likely the
control of the heating system is also dependent on radiator settings in the apartments
which are not included in the model. In the right bottom subplot it can be seen that the
simulated temperature data has a higher spread in the distribution than the measured
temperature. When applying a linear model fit between the simulated and measured
values for the two quantities, a R2 of 93.3 % for the heating load, and 38.0 % for
the temperature are obtained. In other words, the indoor climate is more difficult to
replicate than the heating demand.

4.2. Data set 2 results

By inserting the parameter values for the demonstration case into model, the space
heating loads of 30 multi-family buildings are simulated for two winter days at an
hourly time resolution. The average outdoor temperature for these two days are 0 ◦C.
In Figure 6, the heat pump load and the indoor temperature for the respective building,
along with aggregated HP load and total heating load for the two days are shown for
one, ten and 30 buildings at each row of plots. As seen in the left subplots, the heat
pump load for the different building have different amplitudes and operation times.
The heat pumps are of on/off type, which means that they will operate at 100 % when
heating is required. The different sizes of the building, along with various isolation
factors based on age of building, the HP installation capacities will be different. Thus,
the model reflects varying building and HVAC system characteristics.

Moreover, the individual indoor temperature for each building can be seen in the
middle plot of the same figure. The temperature is fluctuating between ± 1 ◦C, which
is the bandwidth of the indoor temperature controller. Each building has its own
temperature profile, meaning that it varies between the maximum and minimum values
for different times of the day. The initial indoor temperature is chosen at random within
the allowed temperature range, thus, it will vary uniquely for each building. Finally,
the total aggregated heating load for the buildings is shown in the bottom-right plot.
A significant share of the total load is composed by HP:s in this data set. The peak
load is by covered by DH in some buildings, which typically occurs when the outdoor
temperature is under a certain level (as for the building in the validation data set).
Another observation is that the total load smooths out when the number of buildings
in the aggregation increases. This demonstration shows that it is possible to construct
various building objects with different characteristics, and, then, study aggregation
effects of multiple buildings.

5. Discussion

In this section, a discussion regarding the advantages and potential applications of
the simulation model is presented. Also, limitations of the model, along with the
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Figure 6.: Left plots: Individual HP load (thin lines) and average heat pump load for
all HP:s (thick line). Center plots: Indoor temperature in every building (thin lines),
and average temperature in all buildings (thick line). Right plots: The aggregated HP
load and total load. The number of buildings that are simulated are increased per row
of plots. First row: one building. Second row: 10 buildings. Third row: 30 buildings.
The bottom-right plot includes two time series: the dashed curve is the total heating
load, and the solid curve is the HP load.

possibility to use it to simulate multi-family building load profiles in other countries,
are discussed.

5.1. Advantages and potential applications of the model

There are a number of advantages with the proposed simulation model, in comparison
with other modeling approaches, such as detailed building simulation models and
time series models. Firstly, the model includes behavioral aspects of the occupants in
a straightforward way through the Markov chain module. This opens up for additional
degrees of freedom in the load modeling, where normally only weather and temporal
data are taken into account Hong et al. (2010). Further, the model includes multiple
end-uses, where the occupancy is linked to a wide range of appliance categories, and
not just the HVAC system which is common in related work. Due to the fact that
occupancy and appliance usage affect the indoor climate and the operation of the
HVAC system, it is important to incorporate these factors in the analysis.

Another benefit is the simplicity of the modeling approach, since requirements on
input data and collection of parameter values are limited. Retrieving specific building
data can be costly with respect to time and money, which makes it challenging to simu-
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late aggregations of buildings with traditional building based modeling software. In the
presented simulation model, it is assumed that differences in characteristics between
the building objects will cancel each other out when larger populations are analyzed.
In other words, if an average building type is instantiated in the model, the properties
of the aggregation of buildings will be reproduced. Lastly, the statistical comparisons
between the simulated and the empirical measurements provide confidence that the
model can simulate load profiles that are representative for multi-family buildings.
However, validation on other data sets would be beneficial to increase this confidence.

The model outputs the operation status of the loads in the building for all time
steps. As this is given, the potential of increasing/reducing the consumption of these
appliances can be quantified. For instance, based on a certain day type (e.g., a cold
winter weekday), the model can calculate how much power is consumed by the space
heating load to keep a reference indoor temperature. If the heating load is not operated
at full capacity, it is technically feasible to increase the consumption, and consequently
increase the temperature. If explicit indoor temperature constraints are set to satisfy
the comfort, it is possible to estimate for how long time a certain control strategy can
be sustained, e.g. increasing the heating load at an outdoor temperature of 5 ◦C and
quantify how long it takes until the indoor temperature drops 1 ◦C. Conversely, it is
feasible to decrease the heating load, and thereby decrease the temperature.

Since it is possible to assess the availability of flexibility for various scenarios and
conditions (weekdays vs weekends, summer vs winter days, etc.) when comfort con-
straints are introduced, it can be simulated in parallel with the business logic of an
electricity market actor. Practically, the market actor can utilize the consumers’ flex-
ibility to maximize its business goal subject to the constraints. For example, a DSO
can curtail the heating loads for a number of his multi-family building customers to
decrease peak load in the distribution grid, meanwhile assuring that the curtailed
consumption does not introduce a new peak later.

Moreover, with the presented multi-family building simulation model, any aggrega-
tion size of buildings can be considered. Also, the user can change parameter settings
to capture the dynamics of various building types, e.g. older and newer multi-family
buildings with less or better insulation, etc. This means that a wide range of scenarios
can be instantiated and simulated.

5.2. Model limitations and sources of errors

The model consists of multiple assumptions and parameter estimations. Evidently,
the assumptions can be inaccurate for the studied multi-family buildings. One of the
biggest uncertainties with the simplification assumptions is the one related to the
space heating and indoor climate. A multi-family building tends to be large with
many apartments and household behaviors. In the model, one temperature node is
assumed for the whole building. This can of course be too inaccurate for the real
indoor climate dynamics in such a complex. For example, the apartments will have
different orientations in the landscape, e.g. south vs north directions. Depending on
direction, the apartment will have varying influx of solar radiation, and, therefore,
heat gain in the indoor environment. Further, the model does not include dynamics
of the ventilation system, potential airing activities of occupants, and the distribution
system. These model design decisions will affect the accuracy of the flexibility potential.
However, there are a number of advantages of using a simplified approach: (i) the model
generally becomes less complex, (ii) fewer assumptions need to be made regarding the
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design and construction of the multi-family building, and (iii) the requirements on
collection of input data and parameter estimations are reduced.

5.3. Generalization issues

The model is primarily developed for the conditions in climates similar to Northern
Europe. However, it can be used for other countries if the appropriate adaptions are
applied. Four model factors need to be respected: (i) weather dynamics, (ii) household
member behavior, (iii) multi-family building heading demand, and (iv) properties of
the HVAC system. (i) is easy to adapt to other countries and regions, as only the ad-
equate time series for outdoor temperature, and solar radiation need to be extracted.
The TUD used for simulating the behavior of the household members might be ap-
plicable for other countries. Yet these countries must have comparable socioeconomic,
behavioral and cultural characteristics as Northern Europe, e.g., Western European
and North American countries. If these requirements are not met, it may be necessary
to collect complementary TUD from these countries.

For factor (iii), statistics of the countries’ building stock need to be analyzed. Ac-
cording to the statistics, an appropriate reconfiguration/alteration of the multi-family
building parameter setting is required for, e.g., solar heating gains, isolation charac-
teristics, etc. The actual parameters that define the office building architecture in the
HVAC system module is considered to be generic. The last factor (iv) is dependent
on multiple sub-parameters, e.g., HVAC system design, weather dynamics, and the
energy production mix of the country. For example, historic data on outdoor temper-
atures partially sets the capacity of the HVAC system, and the usage of these. If the
relevant region has cheap gas prices, it is possible that the HVAC system is powered by
another primary energy source/carrier than electricity or district heating. Such factors
will influence the conditions for the simulations, and must be adjusted accordingly.

6. Conclusion

A simulation model that could generate load profiles in multi-family buildings in cli-
mates similar to Northern Europe was presented in this paper. The simulation model
considered both behavioral attributes of the household members and the physical in-
door environment of the building. A data set from a real multi-family building with
150 apartments was used to validate the model. Hourly heating energy use and indoor
temperature measurements from the building were available for almost a full year. The
results from the simulations showed that model could reproduce heating demand and
indoor temperature similar to the measurements. However, the model underestimated
heating load peaks during low outdoor temperatures. In addition, an aggregation of 30
buildings was simulated for two winter days to demonstrate the model capabilities to
emulate load curves from different multi-family buildings with respect to, e.g., build-
ing age and HVAC system installation. It was concluded that simplifications in the
modeling approach introduced inaccuracies in results. However, the model requires less
input data and estimation of parameter values. This provided a significant advantage
if larger scale scenarios of DR from a population of different multi-family buildings in
power systems and markets would be simulated.
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The Swedish Energy Agency. 2013. Energiläget 2013. Technical Report. The Swedish Energy
Agency.

The Swedish National Board of Housing, Building and Planning. 2013. Optimala kostnader för
energieffektivisering – underlag enligt Europaparlamentets och r̊adets direktiv 2010/31/EU
om byggnaders energiprestanda. Technical Report. The Swedish National Board of Housing,
Building and Planning.

Verhelst, Clara, David Degrauwe, Filip Logist, Jan Van Impe, and Lieve Helsen. 2012. “Multi-
objective optimal control of an air-to-water heat pump for residential heating.” Building
Simulation 5 (3): 281–291. https://doi.org/10.1007/s12273-012-0061-z.

Widen, Joakim, Andreas Molin, and Kajsa Ellegard. 2012. “Models of domestic occupancy,
activities and energy use based on time-use data: deterministic and stochastic approaches
with application to various building-related simulations.” Journal of Building Performance
Simulation 5 (1): 27–44.

Widen, Joakim, Annica M. Nilsson, and Ewa Wackelgard. 2009. “A combined Markov-
chain and bottom-up approach to modelling of domestic lighting demand.” Energy and
Buildings 41 (10): 1001 – 1012. http://www.sciencedirect.com/science/article/pii/
S0378778809000978.
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