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Abstract— We have demonstrated an electrically conductive
ZnO/GaN multilayer structure using hybrid plasma-assisted
molecular beam epitaxy. Electrical I-V characteristics were
measured through the top three pairs of a six pair ZnO/GaN
sample. The total measured resistance was dominated by lateral
and contact resistances, setting an upper limit of ∼10−4

�·cm2

for the vertical specific series resistance of the stack. A strong con-
tribution to the low resistance is the cancellation of spontaneous
and piezoelectric polarization that occurs in the in-plane strained
ZnO/GaN sample, as shown by electrical simulations. In addition,
the simulations show that the actual vertical resistance of the
sample could in fact be three orders of magnitude lower and
that ZnO/GaN structures with thicknesses fulfilling the Bragg
condition should have similar resistance. Our results suggest that
ZnO/GaN distributed Bragg reflectors (DBRs) are a promising
alternative to pure III-nitride DBRs in GaN-based vertical-cavity
surface-emitting lasers.

Index Terms— ZnO, GaN, distributed Bragg reflector, electrical
conductivity, vertical-cavity surface-emitting laser.

I. INTRODUCTION

VERTICAL-CAVITY surface-emitting lasers (VCSELs)
have small-divergence and circular-symmetric output

beams, low lasing threshold currents, good 2D-array manu-
facturing compatibility, and low manufacturing cost due to
on-wafer testing. Therefore, infrared-emitting VCSELs are
used extensively in e.g. sensing and optical communication.
However, III-nitride based VCSELs with emission wave-
lengths in the UV and visible, which could find applications in
pico projectors, head-up and near-eye displays, biomedicine,
and visible-light communication [1], [2], are still not commer-
cially available. Several research groups have reported lasing
of electrically injected III-nitride VCSELs [3]–[12] but there
is still a need to reach higher output powers, lower threshold
currents and improved thermal stability.
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Until recently [11], all III-nitride based VCSELs had
employed electrically insulating distributed Bragg reflec-
tors (DBRs), demanding intracavity contacts. To reduce the
lateral resistance, intracavity contacts must be combined with
long cavities, resulting in a low longitudinal optical confine-
ment factor and a high optical loss. A conductive n-type DBR
would make it possible to place the n-side metal contact
outside the cavity and thereby allow for a shorter cavity
length. The progress in realizing electrically conductive n-type
III-nitride DBRs has been hampered by the large conduction
band offsets, the large polarization charges at the interfaces,
and the low Al(Ga)N electrical conductivity.

The lowest specific series resistances reported for III-nitride
DBRs are 2 × 10−4 � ·cm2 for a 40 pair Al0.12Ga0.88N/GaN
DBR having a 92 % peak reflectivity and 11 nm stopband
width [13], and 7.8 × 10−4 � ·cm2 for a 40 pair DBR using
lattice-matched Al0.82In0.18N/GaN and having a peak reflec-
tivity of 99.9 % and a 22 nm stopband width [11], [14]. The
narrow stopband widths are a result of the large number of
pairs needed to achieve high reflectivity, due to the relatively
small refractive index contrasts for the AlInN/GaN and the
low Al-composition AlGaN/GaN material pairs. Electrically
conductive high Al-composition Al(Ga)N/GaN DBRs have
also been demonstrated [15]–[18], but the specific series
resistances, which were in the order of 0.1�·cm2 or above, are
still too high for VCSEL applications, which demand a DBR
resistance below roughly 10−3 � ·cm2. The only electrically
conductive mirror incorporated into a working electrically
injected III-nitride VCSEL is the AlInN/GaN DBR devel-
oped at Meijo University [11], [14]. Efforts have also been
made to make vertically conductive DBRs using n-GaN/GaN
where the highly doped n-GaN layers are selectively porosi-
fied [19]–[21]. Peak reflectivities of up to ∼99.5 % have been
achieved for these nanoporous DBRs. The vertical specific
series resistance has either been in the order of 1� ·cm2 [21],
or no vertical I -V characteristics have been presented which
makes it difficult to make a fair comparison with other
conductive DBRs [19], [20].

A promising alternative to pure III-nitride DBRs is the
ZnO/GaN material pair, which has a similar refractive
index contrast [22], [23] and a smaller lattice mismatch
(1.9 %) [24], [25] compared to AlN/GaN. Due to the large
refractive index contrast, only approximately 20 DBRs pairs
are needed to achieve above 99% reflectivity which also
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Fig. 1. Scanning electron microscope image showing the top three ZnO/GaN
periods. The inset shows a bright field scanning transmission electron micro-
scope image of one ZnO/GaN period.

gives a relatively large stopband width. In addition, ZnO
can, as opposed to AlN, easily be doped to high electron
concentrations [26] which together with the small conduction
band offset of approximately 0.2 eV [27] make ZnO/GaN
suitable for vertical electrical injection. As will be shown here,
the vertical resistance is further reduced by the cancellation of
spontaneous and piezoelectric polarization in in-plane strained
DBRs. We recently demonstrated the growth of ZnO/GaN
DBRs using hybrid plasma-assisted molecular beam epitaxy
(PAMBE) [28]. As a continuation of this work and following
preliminary electrical studies [29], we here investigate the
vertical electrical conductivity of a six pair ZnO/GaN mul-
tilayer structure in detail, both experimentally and through
simulations.

II. GROWTH

An n-type and crack-free multilayer sample with
six ZnO(0001)/GaN(0001) pairs was grown on a semi-
insulating GaN(0001)/Al2O3 substrate by hybrid PAMBE,
i.e. both materials were grown in the same chamber. Each
layer was grown using a low-temperature followed by a
high-temperature growth step, which for ZnO were 300°C
and 500°C, and for GaN 500°C and 635°C. For more details
on the growth, see [28]. The root-mean-square surface
roughness at the top of the 6 pair sample was determined by
atomic force microscopy to be 2.1 nm over 2 µm×2 µm. Hall
measurements on samples with only a single layer of either
ZnO or GaN showed electron concentrations of 1×1019 cm−3

for ZnO and 1.8 × 1018 cm−3 for GaN. Secondary ion mass
spectrometry (SIMS) of ZnO grown on GaN revealed a
hydrogen concentration in the order of 1020 cm−3 and SIMS
of GaN grown on ZnO showed oxygen concentrations of
∼1020 cm−3. Concentration of other impurities as Zn and Si
in GaN and Ga in ZnO were significantly lower. Hydrogen
in ZnO and oxygen in GaN are known to be shallow
donors [30], [31] and are likely the main reasons for the
unintentional n-doping of the sample.

A scanning electron microscope (SEM) image showing
the cross-sectional view of the top three pairs, that were
electrically characterized, is presented in Fig. 1. The inset

Fig. 2. Reciprocal space map for the asymmetric (101̄5) reflection of the
six pair ZnO/GaN sample, with the dashed line marking the position of the
GaN (101̄5) reflection.

shows a bright field scanning transmission electron microscope
(STEM) image of one ZnO/GaN period. The STEM image
indicates that the lower GaN/ZnO interface, at the transition
from GaN to ZnO in the growth direction, is better defined than
the upper ZnO/GaN transition. The target thickness was 56 nm
for the ZnO layers and 46 nm for the GaN layers, fulfilling
the Bragg condition for a wavelength of 450 nm. Due to
an unstable Zn-source, the resulting ZnO layer thicknesses
were roughly 20 nm. The GaN layers were between 80 and
110 nm thick as a result of additional GaN growth during
temperature ramps. In addition, the topmost GaN layer was
only approximately 30 nm thick since substrate heater issues
led to an early termination of the growth.

The reciprocal space map for the asymmetric (101̄5) reflec-
tion, measured by x-ray diffraction, is presented in Fig. 2. The
ZnO peak is aligned to the GaN peak and the ZnO is thus in-
plane strained to the GaN. As we will show later on, this has
a large impact on the vertical electrical conductivity of the
structure.

III. ELECTRICAL CHARACTERIZATION

In order to measure the vertical resistance, mesa structures
with 30, 45, 60, 75 and 100µm radii were etched and
contacted as shown in Fig. 3. Using Cl2/Ar inductively coupled
plasma reactive ion etching, three ZnO/GaN pairs high mesa
structures were formed. 250 W was used for both the ICP and
electrode RF power with 30 sccm Cl2 and 15 sccm Ar flow and
10 mTorr pressure during the 1 minute etch. Inspection of the
sample cross-section in the SEM confirmed that the etch had
stopped in the GaN layer. Contacts of Al(150 nm)/Pt(50 nm)
were deposited by e-beam evaporation at the top and next to
the mesas with a lateral distance of 3µm between the mesa
and the top and bottom contact edges, see Fig. 3. Transmission
line measurements (TLM) yielded a specific contact resistiv-
ity of ∼10−4 � · cm2 and a sheet resistance of the sample
of ∼200�/sq.
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Fig. 3. Schematic cross-section of the three ZnO/GaN pair high mesas and
Al/Pt contacts.

Fig. 4. I -V characteristics measured through mesas with three ZnO/GaN
pairs of different radii.

Fig. 5. Mean specific series resistance of three ZnO/GaN pairs with error
bars versus mesa radius including an estimation of the contribution from the
lateral and contact resistance.

The I -V characteristics measured through the top three pairs
are linear and shown for different mesa radii in Fig. 4. The
specific series resistance, Rs A, versus mesa radius is plotted
in Fig. 5, where Rs is the series resistance extracted from the
I -V characteristics and A is the mesa area. By measuring the
resistance of mesas with equal radius but at separate locations

on the sample, error bars were calculated. The vertical specific
series resistance of the three pairs should not change with mesa
radius, assuming the current spreads uniformly over the mesa.
In Fig. 5, the specific series resistance is instead increasing
approximately linear with mesa radius, corresponding to the
case when the contact resistance and the lateral resistance
between contact and mesa edge are dominating. The dom-
inance of the lateral and contact resistance was confirmed
by estimating their resistance contribution, plotted in Fig. 5,
from the TLM measurements. A clear decrease in specific
series resistance, when reducing the lateral distance to 3µm
from 10µm used for a previous sample, further confirmed
this dominance. Thus, an exact value for the actual vertical
resistance cannot be extracted, but the specific series resistance
for three pairs, excluding lateral and contact resistance, is at
most in the low 10−4 � ·cm2 range. The results suggest that
a full 20 pair ZnO/GaN DBR should have a specific series
resistance comparable to, or lower, than the lowest values
reported for III-nitride DBRs.

IV. ELECTRICAL SIMULATIONS

To further investigate the electrical conductivity of
ZnO/GaN multilayers, Synopsys’ Sentaurus TCAD was used
to perform drift-diffusion simulations. It solves the Poisson
and carrier continuity equations self-consistently and takes into
account tunneling of electrons through the potential barriers.
Spontaneous and piezoelectric polarization were included by
adding interface sheet charge densities according to [34]

σ = PZnO
sp − PGaN

sp +2

(

e31−
c13

c33
e33

)

aGaN−aZnO

aZnO
+ Perror (1)

where e31 and e33 are the proper piezoelectric constants for
ZnO, c13 and c33 are elastic constants for ZnO, aZnO and
aGaN are the in-plane lattice constants and PZnO

sp and PGaN
sp

the spontaneous polarization charge densities for respective
material. Recently, Dreyer et al. reported that the common
practice to use zincblende as a reference in calculating the
spontaneous polarization of wurzite materials and the proper
rather than the improper e31 piezoelectric constant, gives an
error in the calculated total polarization. The term Perror , which
is especially large for relaxed structures, is added to correct for
this [35]. Equation (1) describes the sheet charge density at the
passage from fully strained ZnO to relaxed GaN when moving
in the growth direction, corresponding to the Zn-face/N-face
interfaces. For the O-face/Ga-face interfaces, the sheet charge
density has the opposite sign. The material parameter values
used in the simulations for ZnO and GaN are listed in Table I
together with the material parameter values for AlN.

The band diagram and I -V characteristics were simulated
for three ZnO/GaN pairs having 80 nm thick GaN and 20 nm
thick ZnO layers, and a top 30 nm thick GaN layer, similar to
the experimentally characterized top three pairs of the six pair
sample. Ideal ohmic contacts at the top and bottom of the
stack were used to sweep the voltage bias for current flow
simulations. As comparison, simulations for ZnO/GaN and
AlN/GaN DBRs with layer thicknesses fulfilling the Bragg
condition at a wavelength of 450 nm was also performed.
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TABLE I

IN-PLANE LATTICE CONSTANT, a, SPONTANEOUS POLARIZATION CHARGE DENSITY (ZINCBLENDE REFERENCE), Psp , PROPER PIEZOELECTRIC

CONSTANTS, e31 AND e33 , AND ELASTIC CONSTANTS, c13 AND c33 , FOR WURTZITE ZnO, GaN, AND AlN [24], [25], [32], [33]

Fig. 6. Simulated conduction band diagram for (a) one ZnO/GaN multilayer period with thicknesses corresponding to the experimentally investigated sample
(b) one period of ZnO/GaN with layers thicknesses fulfilling the Bragg condition at 450 nm and (c) an AlN/GaN DBR fulfilling the same Bragg condition.
The blue lines are for in-plane strained ZnO and AlN and the red lines for relaxed ZnO and AlN. The dashed lines corresponds to an electron concentration
of 1018 cm−3 in the ZnO and AlN and the solid lines to an electron concentration of 1019 cm−3.

Figure 6(a) shows the conduction band diagram for relaxed
ZnO and ZnO fully strained to GaN for electron concen-
trations of 1018 cm−3 and 1019 cm−3 in ZnO. An electron
concentration of 1.8 × 1018 cm−3 is assumed for GaN. Only
minor differences are seen when compared with the conduction
band diagram for the ZnO/GaN DBR fulfilling the Bragg
condition, which is shown in Fig. 6(b). A higher ZnO electron
concentration gives a reduction of the potential barrier as
the free carriers can screen the polarization sheet charges at
the interfaces. The contributions to the sheet charge density
from the piezoelectric and the spontaneous polarization almost
entirely cancels for the structures with in-plane compressively
strained ZnO. As a result, the strained structures have a sub-
stantially lower barrier height at the Zn-face/N-face interface
compared to the relaxed structures. According to Eq. (1) and
Table I, the sheet charge density is 0.0042 C/m2 when ZnO
is strained to GaN and −0.079 C/m2 for relaxed ZnO, i.e.
when there is no piezoelectric polarization. Also for the case of
ZnO and GaN both being in-plane strained to an intermediate
lattice constant, the two components of the polarizations would
cancel. This is in contrast to the case of AlN/GaN for which
the conduction band diagram is plotted in Fig. 6(c). With in-
plane tensile strained AlN, the strong piezoelectric polarization
will give rise to a large total polarization sheet charge density
of −0.10 C/m2 in AlN/GaN DBRs. Together with the larger
conduction band offset this results in a significantly higher
potential barrier.

Figure 7 shows the vertical specific series resistance,
extracted from simulated I -V characteristics, of the ZnO/GaN
structure with thicknesses of the experimentally investigated
sample. As indicated by the calculated conduction band dia-
grams, the resistance is strongly dependent upon both electron

Fig. 7. Specific series resistance simulated for three ZnO/GaN pairs with
strained ZnO and different ZnO electron concentrations. The horizontal dashed
line indicates the detection limit set by the lateral and contact resistance on
our sample and the red circle the electron concentration and simulated specific
series resistance of our sample.

concentration and strain. An increased electron concentration
in the GaN layers instead of the ZnO layers leads to a
similar reduction in resistance, but is not shown in the figure.
As expected from the similarity of Fig. 6(a) and Fig. 6(b), only
a relatively small difference in resistance was seen compared
to the target thicknesses DBR structure. This indicates that
samples with target thicknesses should have similar resistance
to the sample experimentally investigated here. The red cir-
cle illustrates the electron concentration in the experimen-
tally investigated samples as well as the simulated specific
series resistance of such a sample. The simulated resistance
of ∼10−7 � · cm2 is more than three orders of magnitude
lower than the detection limit set by the lateral and contact
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resistance contributions. Thus, the actual vertical resistance
of a full 20 pair ZnO/GaN DBR could be as low as
∼10−6� · cm2, significantly lower than the best reported
results for III-nitride based DBRs.

V. CONCLUSIONS

We have demonstrated an electrically conductive ZnO/GaN
multilayer structure, grown by hybrid PAMBE. We measured
an upper limit of the specific series resistance, Rs A, for three
ZnO/GaN pairs in the low 10−4 � · cm2 range, comparable
to the lowest values reported for III-nitride DBRs. Lateral
and contact resistances dominated the total resistance and
simulations indicate that the actual vertical specific series
resistance of the ZnO/GaN sample could be orders of magni-
tudes lower. In addition, both GaN and ZnO [26] can easily
be doped to high electron concentrations, suggesting that the
resistance could be further reduced compared to the uninten-
tionally doped structure investigated here. Although further
optimization of the growth is needed to improve especially
the optical performance, our results show that ZnO/GaN DBRs
are a promising alternative to pure III-nitride n-type DBRs in
GaN-based VCSELs. The benefits with this material combina-
tion are the large refractive index contrast, small conduction
band offset, ease of n-type doping, comparably small lattice
mismatch, and, as has been shown here, the cancellation of
interface charges induced by piezoelectric and spontaneous
polarization.
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