Lågdimensionella material för generering av solbränsle

Tomas Edvinsson

Avdelningen för Fasta tillståndets fysik Institutionen för teknikvetenskaper, Ångströmlaboratoriet Uppsala universitet

Solforum

Ångström laboratory

Västerås, 14 september, 2017

T. Edvinsson

Acknowledgement

CIGS, Watersplitting

Marika Edoff (Uppsala university, UU) Jesper Jacobsson (UU) Lars Stolt (Solibro AB) Zhen Qiu (UU) Ilknur Bayrak Pehlivan (UU)

Molecular and Perovskite solar cells

Gerrit Boschloo (UU) Erik Johansson (UU) Håkan Rensmo (UU) Licheng Sun (KTH) Sang-Il Seok (UNIST) Anders Hagfeldt (EPFL) Meysam Pazoki (UU) Zhen Qiu (UU)

Low dimensional semiconductors and catalysis

Jesper Jacobsson (UU) Håkan Rensmo (UU) Jacinto Sa (UU) **Zhen Qiu (UU) Ilknur Bayrak Pehlivan (UU)** Carlos Triana (UU)

Taha Ahmed (UU) Jakob Thyr (UU)

DFT, Reactive force fields

Kersti Hermansson (UU) Jolla Kullgren (UU) Sudip Chakraborty (UU) Meysam Pazoki (UU)

The Dirac equation and finite difference methods Ken Mattsson (UU) Martin Almquist (UU)

Financial support

HORIZ N 2020

Forskningsverktyg, metoder

Standardtekniker: XRD, SEM, TEM, XPS, EXAFS, elektrokemi

- Elektro-spray, sputtering, våtkemi, avancerad gasdeponering
- Opto-impedans och tidsupplöst spektroskopi (Laddningslivstid och transportegenskaper)
- Dynamisk ljusspridning, elektroforetisk ljusspridning (Tillväxt, Zeta-potential)

- Spektroskopisk ellipsometer, Hall-mätningar.
- Skannande Kelvin-probe med ljuskälla (Utträdesenergi och ytfotospänning)
- AFM-kopplad Raman (Raman spektroskopi, μ -PL mappning, SNOM)

Teoretiska verktyg:

- Lokalt kluster (26 processorer)
- Swedish National Infrastructure of Computing (SNIC) (200-300 000 CPU timmar/mån)

Teoretiska metoder:

- Kraftfältsmetoder
- Densititetsbaserad QM (DFT)
- Vågbaserad QM (MP2, CCSD)
- Papper och penna

Ångström laboratory

Solforum

Västerås, 14 september, 2017

Introduktion: Från fotoelektrokemiska celler till PV-elektrolys

Jacobsson, V. Fjällström, M. Sahlberg, M. Edoff and **T. Edvinsson** *Energy & Environmental Science*, **2013**, 6, 3676–3683

Jacobsson, T. J.; Fjällström, V.; Edoff, M.; Edvinsson, T., Energy & Environmental Science, **2014**, 2014, 7, 2056

Fig. 4. (a) Experimental configuration for a GGS with a solid state pn-junction consisting of GdS and ZnO and with platinum nanoparticles as a catalyst. A type (c) configuration, (b) Principal configuration of the electrode, (c) Prioto illustrating the macroscopic degradation of the films under operation. (d) Photocurrent as a function of optential under chopped illumination corresponding to AM 15.6 CGSGG2/ZnOPR.

Jacobsson, T. J.; Fjällström, V.; Edoff, M.; **Edvinsson, T.,** *Solar Energy Materials & Solar Cells*, **2015**, 134, 185–193

Solbränsle (H₂) från vatten och materialkrav

$$E_{g\min} = 1.23 + \eta_{sep} + \eta_{trans} + \eta_{cat}$$

$$\eta_{cat} = \eta_{HER} + \eta_{OER}$$

<u>Materialkrav</u>

-Bandgap över 2.0 eV (förlust till V_{foto} och till drivkraft)

-Lämplig energi för bandkanter

-Hög foton-till-elektron omvandling (Light harvesting efficiency, LHE)

-Goda transportegenskaper

-Stabila

-lcke-giftiga

-Billiga

Ångström laboratory

Reaktion + kostnaden i fri energy för laddningsseparation: 1.23 eV + kostnad i fri energi

$$\eta = \frac{J_{sc} \cdot V_{oc} \cdot ff}{P_{light}} \qquad V_{oc} = E_g - \eta_{sep} = E_g - k_B T \ln \left[\frac{8\pi (k_B T)^2}{c^2 h^3} \frac{n^2 E_g}{j_{gen}} \alpha L \Phi_{rec} \right]$$

Kostanden är intimt relaterad till materialegenskaperna där E_g är bandgapet, n är refraktionsindex, j_{gen} är fotonabsorptionen i AM1.5 spektrumet, Φ_{rec} är kvoten mellan icke-radiativa och radiativa rekombinationshastigheterna, α är absorptionkoefficienten och L är diffusionslängden av minoritetsbäraren och ersätts med materialtjockleken (d) om d < L.

```
W.Shockley,H.J.Queisser,<br/>J.Appl.Phys. 1961, 32, 510–519.Typiska experimentella värden för \eta_{sep} i state-of-the-art<br/>material i solceller:Jacobsson, T. J.; Fjällström, V.; Edoff, M.; Edvinsson, T.,<br/>Solar Energy Materials & Solar Cells, 2015, 138, 85-950.3 eV i GaAs<br/>0.36 eV i kisel (0.61 in amorft kisel)<br/>0.4 eV i MA-blyjodid perovskiter (V_{oc}=1.15 V, Eg=1.55 eV)<br/>0.4 eV i InP<br/>0.41 eV i CIGS (V_{oc}=0.76 V, Eg=1.17 eV)<br/>0.6 eV i CdTe (0.4 i enkristaller)<br/>> 0.6 eV i organiska solceller
```


Ångström laboratory

Parallellt arbete för att öka fotospänningen och sänka överpotentialen för reaktionen med förbättrade katalysatorer

UPPSALA UNIVERSITET

Solforum

Västerås, 14 september, 2017

T. Edvinsson

The Solar Spectrum Mismatch (SSM) problem

- Ett grundläggande problem med vattensplittring med material som har endast ett bandgap är felmatchningen mellan de termodynamiska och kinetiska kraven för reaktionen och fördelningen av solspektrumet som sträcker sig in i IR området.
- Detta kan benämnas "The solar spectrum mismatch (SSM) problem"
- Standardlösningen till detta är att är att konstruera tandem-enheter (eller motsvarande Z-schema i en suspension) eller utföra fotonuppkonvertering.

Tandem-enhet

UNIVERSITET

Ett enkelt och effektivt alternativ till tandem, Zschema eller fotonuppkonvertering

Seriekopplade enheter

Ett alternativt sätt att absorbera fler fotoner i solspektrumet och omvandla dem till laddningsbärare med högre kemisk potential är att ansluta flera absorberande enheter i serie, sida vid sida.

Fotoströmdensiteten minskar med en faktor som är lika med antalet anslutna celler, men spänningsskillnaden mellan katoden och anoden ökar med samma faktor och såldes ändras inte verkningsgraden ($P = J \cdot V$) per area. Det är en lösning som i stor utsträckning förbises i litteraturen.

Tandem jämfört med Serie

System	E _g [eV]	J _{max} [mA/cm ²]	STH _{max} [%]	J _{real} [mA/cm ²]	STH _{real} [%]
1 cell SrTiO ₃	3.4	0.60	0.74	>0.06	>0.07 [ref7]
1 cell TiO ₂	3.0	1.85	2.28	-	-
1 cell WO ₃	2.6	5.05	6.21	-	-
1 cell Fe ₂ O ₃	2.1	12.5	15.4	-	-
1 cell ideal	2.0	14.5	17.8	-	-
2 cells CdTe	2.9 (2·1.44)	15.6	19.2	-	-
2 cells ideal	2.4 (2.1.2)	20.0	(24.6)	-	-
3 cells CIGS	3.6 (3·1.2)	13.3	16.4	8.5	10.5 [ref 2]
3 cells Si	3.3 (3·1.1)	14.7	18.1	-	-
3 cells ideal	2.8 (3.0.94)	17.3	21.2	-	-
4 cells ideal	3.2 (4.0.80)	13.6	16.7	-	-
Tandem Fe ₂ O ₃ /DSC	4.5 (2.6+1.9)	4.98	6.13	2.5	3.1 [ref 8]
Tandem GaInP2/GaAs	3.25 (1.83+1.42)	13.3	10.4	11	13.5 [ref 9]
Tandem ideal 2 cells	2.48 (1.59+0.90)	26.0	(32.0)	-	-
Tandem BiVO₄/2-jn a-Si	3.5 (2.4+1.1)	7.47	9.19	4.0	4.9 [ref 10]
Tandem 3-jn a-Si				6.4	7.8 [ref 11]

Table 1. Comparison of the optical limit for different concepts under the assumption EQE = 1, $\eta_{sep} = \eta_{cat} = 0.4$ V and $\eta_{trans} = 0$ V. Measured results for the full reaction is also given where such have been found.

Den optiska gränsen för STH-effektiviteten för en 2-cells seriekopplad vattensplittringsenhet är 24.6% jämfört med 32.0% för den optimala 2-cell-tandemenheten vid 1 sol (AM1.5G, 1000 Wm⁻²).

Jacobsson, T. J.; Fjällström, V.; Edoff, M.; Edvinsson, T., Solar Energy Materials & Solar Cells, 2015, 138, 85-95

En monolitisk PV/PEC enhet

Material för en 3-cell serialkopplad CIGS enhet syntetiserades och medgav användandet av fotoner upp till 1200nm och en total sol-till-väte (STH) verkningsgrad bortom 10%.

T. J.Jacobsson, V. Fjällström, M. Sahlberg, M. Edoff and **T. Edvinsson** Energy Environ. Sci., **2013**, 6, 3676–3683

Ångström laboratory

Hela reaktionen: Gasdetektering, H₂/O₂ kvot

O₂

Energy Environ. Sci., 2013, 6, 3676–3683

Ångström laboratory

Solforum

 H_2

CIGS, Si och hybridperovskiter för soldriven vattensplittring

10% STH 3-CIGS precious catalysts

Jacobsson, Fjällström, Sahlberg, Edoff, Edvinsson, Energy Environ. Sci., **2013**, 6, 3676

Ångström laboratory

10% STH 4-Si **nonprecious catalysts** (NiBi anode and NiMoZn cathode)

Cox,Lee, Nocera, Buonassisi, PNAS, **2014**, 111, 14057-14061 12.3% STH
2-cell perovskite
nonprecious catalysts
(NiFe LDH as anode and Ni(OH)₂)

Luo, Im, Mayer, Schreier, Nazeeruddin, Park, Tilley, Fan, Grätzel, Science, **2014**, 345, 1593-1594

Solforum

Swedish nergy Agency utan ädelmetaller

Västerås, 14 september, 2017

De dominerande mekanismerna för laddningsseparation beror på dimensionerna och lokala fälten

No fields Diffusion dominates

Local fields Diffusion + migration Macrosopic fields Migration dominates

Jacobsson, Fjällström, Edoff, and **Edvinsson** *Energy & Environmental Science.*, **2014**, 7, 2056-2070

Jacobsson, T. J.; Fjällström, V.; Edoff, M.; **Edvinsson, T.,** *Solar Energy Materials & Solar Cells*, **2015**, 134, 185–193

Ångström laboratory

Utveckling av lågdimensionella Ni- and Cobaserade nanokatalysatorer

Fastän tekno-ekonomisk analys har visat att kostnaden för erforderlig mängd Pt och IrO₂ är mycket låg jämfört med kostnad för PV-material och underhåll i soldriven väteproduktion (Energy Environ. Sci., 2014, 7, 3828), kan en storskalig användning på TW-nivå kräva **ickeädelmetaller** som katalysatorer.

Work function NiO: 5.2 – 5.6eV (Hydroxilerings-beroende, upp till 6.7 eV för NiO i full oxidativ omgivning)

Ångström laboratory

Kontroll av kristalltillväxt och ytladdningseffekter i självaggregerande nanoflak av nickeloxid

Ångström laboratory

UPPSALA

UNIVERSITET

Solforum

Västerås, 14 september, 2017

Kontroll av kristalltillväxt och ytladdningseffekter i självaggregerande nanoflak av nickeloxid

Ångström laboratory

Solforum

Västerås, 14 september, 2017

T. Edvinsson

Kalcinering och vattenfrisättning ger porösa nanoflak av NiO

Protonutbyte

$$NiO^{-} \xrightarrow{+H^{+}} NiOH \xrightarrow{+H^{+}} NiOH_{2}^{+}$$

50 nm

UPPSALA

OER katalysator, η_{OER} = 0.29 V @ 1mA/cm⁻², 0.35 V @10mAcm⁻²

 $(\eta_{OFR} = 0.35 \text{ V} @ 10 \text{ mA/cm}^{-2} \text{ för } \text{RuO}_2 \text{ och } 0.38 \text{ V} \text{ för } \text{IrO}_2$ under samma villkor)

NiO nanoflak/Ni-skum

Fe-NiO nanoflak/Ni-skum

Järn-dopad nickeloxid som en bi-funktionell katalysator

Ångström laboratory

Ramanspektroskopi in-operando på ytan av katalysatorn under både vätgas- och syrgasgenereringen

Ångström laboratory

Utveckling av 3D FeNi dubbel-lager hydroxider

Ångström laboratory

UPPSALA

UNIVERSITET

Solforum

Västerås, 14 september, 2017

Ultratunna nickelsulfider (Ni₃S₂)

UPPSALA UNIVERSITET

Högeffektiv vätgaskatalysator med 3D amorf nickel, elektroniskt anpassad med andra element.

Icke-ädel HER katalysator

 η_{HER} = 60 mV @ 10mA/cm⁻²

Extremt låg överpotental, mycket lovande katalysator!

Ultratunna nanoflak av nickel-colbolt-selenid för katalys av vätgasreaktionen

Solforum

UPPSALA

UNIVERSITET

Hybrid-perovskiter (Modifierade perovskitmaterial från Boschloos och Hagfeldts grupp)

PECSYS Horizon 2020 project (2017-2020)

Edvinssons och Marika Edoffs grupp är en svensk nod i ett beviljat EU-projekt, PECSYS H2020, koordinerat av Helmholtz Center, Berlin, Tyskland.

"The **PECSYS** project seeks to demonstrate a system for the solar driven electrochemical hydrogen generation with an area >10 m² and a solar-to-hydrogen efficiency of >6% that is stable for six month and showing a degradation below <10%."

www.pecsys-horizon2020.eu

Projektmål Uppsala universitet:

- 12% sol-till-väte verkningsgrad för lab-prototyper och stabilitet över 1000 h för ädelmetallfria katalysatorer
- 8% verkningsgrad för system >10 m²

Ångström laboratory

Tack till Energimyndigheten och övriga för att ni var här och lyssnade!

För ytterligare kontakt eller frågor:

Tomas.edvinsson@angstrom.uu.se

Solforum

Ångström laboratory

Västerås, 14 september, 2017

T. Edvinsson