

Direct driven generators for wave power

Challenges and possibilities

Anders Hagnestål

Power Take-Off (PTO) systems and direct driven generators

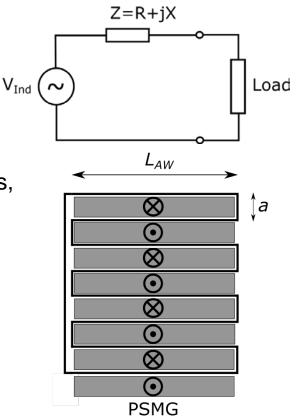
- There are different types of PTO systems
 - Hydraulic or pneumatic PTO
 - Gear box with generator
 - Direct driven generator
- Direct driven generators are typically linear, but we will include rotating machines as well if a conversion system from linear to rotating motion is used without a gear
- Direct driven generators for wave power today are large and heavy do they need to be?

The project

- We will build a linear TFM generator prototype in the lab
 - High force density (shear stress) 100-120 kN/m²
 - Very high efficiency 98%
 - Near 200 kN damping force
 - Light weight about 5-7.5 tons, 25-40 N/kg
 - 0.7 m/s 140 kW, 17.5-28 W/kg, 3 m/s 600 kW, 75 120 W/kg
 - Maintenance free? Depend on bearings...
 - Will be built during 2017
- We will build an extra stator that will be run as a motor
- We will develop a basic power electronics system for the generator
- We will design a rotating TFM generator

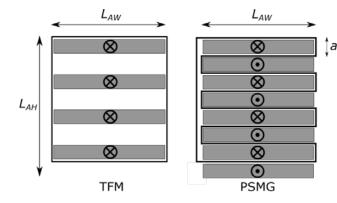
The team

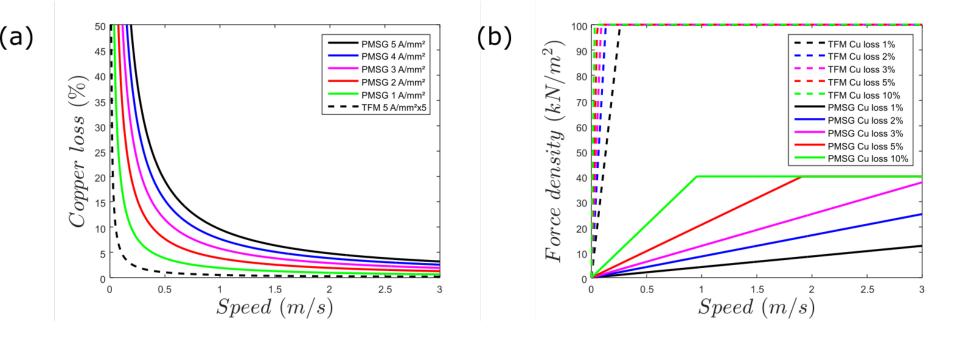
- Anders Hagnestål project manager, researcher at KTH
- 5 master students in various subjects
- Strong support from the EPE group electrical machines and power electronics
- Support from machine design department
- Support from the marine engineering department


The slow speed challenge

- P=v*F. Wave power is delivered with slow speeds and large forces, and located at sea
 - Large forces PTO and structures will be large and heavy
 - Slow speed electric energy conversion becomes difficult and inefficient
 - Located at sea maintenance will be expensive
 - Maximum forces are huge many times larger than average forces
 - Runs all ours of the day, all days of the year, 20 years... Very many repetitions ~80 million
- An ideal direct driven generator would have
 - High force density (shear stress) to reduce size and costs
 - Low losses
 - Maintenance free operation
- ...but this is not typically what you get for any PTO system...

Existing technology – PMSG


- Performs well at high speed
- Can be maintenance free
- Performs less well at low speed < ~2 m/s
 - Induced voltage proportional to speed
 - Resistance independent on speed $R = \rho l/A$
 - Low speed low U²/R ratio large copper losses, low current (weak force) or both
 - The internal resistance R is rather large
 - Winding is long
 - The machine type has limited space for windings – thin winding


Address the problems - new TFM generator type

- Totally different geometry optimally short winding ~ 4-8 times shorter
- Short winding and plenty of space winding can be made thicker without adding much to cost
- $R = \frac{\rho l}{A}$: If the amount of winding is kept constant, $R \propto l^2$
- Core can be compacted reduces conductor length further
- The copper loss ratio R/U² becomes up to 100 times lower
- The force density becomes higher due to geometry up to 10 times higher
- Low speed copper losses become very low anyway
- Uses small amount of non-oriented electrical steel per N low iron losses

Force density and copper losses vs speed

What are the problems

- Is it complex?
- YES!!
- ...the design is complex, but not the assembly so mass production will be fine
- Is the power factor low?
- Yes, but not that low, 0.5-0.7 is expected
- Can it become maintenance free?
- It depends on the bearings. Magnetic bearings may be both maintenance free and quite cheap, but requires a quite extensive and complicated design project first

What is the approximate weight and material cost for 200 kN, 7 m stroke length

- Weight, 200 kN:
 - 7 m stroke length, 7.5 tons
 - 2 m stroke length, 5 tons
- Material cost in mass production, ready to assemble, 7m stroke length
 - Total, 33 000 Euro
 - Structure material, 12 000 Euro (stainless steel, steel, glass fiber)
 - Linear bearings, 10 000 Euro
 - Active material, 11 000 Euro
 - Magnets 4 000 Euro
 - Winding 1 200 Euro
 - Electrical steel 5 800 Euro

Performance compared to a typical machine at 0.7 m/s

- 10 times as strong per unit active area size and cost reduced grossly (typical: 10-15 kN/m², TFM 100-120 kN/m²)
- Electromagnetic losses reduced by a factor of 1/10 to 1/5.
- Extremely low losses: Can even be used for reactive control which earlier has been regarded as unfeasible due to accumulation of losses, or fine tuning of another control system
- Cogging handled by current control

Thank you for listening

We acknowledge our funders Energimyndigheten (Swedish Energy Agency) and J. Gust. Richerts foundation. Without their support, this project would not have been possible.